2018-11-02 15:13:51 +00:00
|
|
|
import io
|
|
|
|
import time
|
|
|
|
import librosa
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
2019-02-25 16:20:05 +00:00
|
|
|
from .text import text_to_sequence, phoneme_to_sequence, sequence_to_phoneme
|
2018-11-02 15:13:51 +00:00
|
|
|
from .visual import visualize
|
|
|
|
from matplotlib import pylab as plt
|
|
|
|
|
|
|
|
|
2019-04-12 14:12:15 +00:00
|
|
|
def synthesis(model, text, CONFIG, use_cuda, ap, truncated=False, enable_eos_bos_chars=False, trim_silence=False):
|
2019-03-11 16:40:09 +00:00
|
|
|
"""Synthesize voice for the given text.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (TTS.models): model to synthesize.
|
|
|
|
text (str): target text
|
|
|
|
CONFIG (dict): config dictionary to be loaded from config.json.
|
|
|
|
use_cuda (bool): enable cuda.
|
|
|
|
ap (TTS.utils.audio.AudioProcessor): audio processor to process
|
|
|
|
model outputs.
|
|
|
|
truncated (bool): keep model states after inference. It can be used
|
|
|
|
for continuous inference at long texts.
|
2019-04-12 14:12:15 +00:00
|
|
|
enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence.
|
|
|
|
trim_silence (bool): trim silence after synthesis.
|
2019-03-11 16:40:09 +00:00
|
|
|
"""
|
2019-04-12 14:12:15 +00:00
|
|
|
# preprocess the given text
|
2018-11-02 15:13:51 +00:00
|
|
|
text_cleaner = [CONFIG.text_cleaner]
|
2019-01-16 14:53:07 +00:00
|
|
|
if CONFIG.use_phonemes:
|
|
|
|
seq = np.asarray(
|
2019-04-12 14:12:15 +00:00
|
|
|
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language, enable_eos_bos_chars),
|
2019-01-16 14:53:07 +00:00
|
|
|
dtype=np.int32)
|
|
|
|
else:
|
2019-03-11 16:40:09 +00:00
|
|
|
seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32)
|
2018-11-02 15:13:51 +00:00
|
|
|
chars_var = torch.from_numpy(seq).unsqueeze(0)
|
2019-04-12 14:12:15 +00:00
|
|
|
# synthesize voice
|
2018-11-02 15:13:51 +00:00
|
|
|
if use_cuda:
|
|
|
|
chars_var = chars_var.cuda()
|
2019-03-11 16:40:09 +00:00
|
|
|
if truncated:
|
|
|
|
decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated(
|
|
|
|
chars_var.long())
|
|
|
|
else:
|
|
|
|
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
|
|
|
chars_var.long())
|
2019-04-12 14:12:15 +00:00
|
|
|
# convert outputs to numpy
|
2019-03-06 12:11:46 +00:00
|
|
|
postnet_output = postnet_output[0].data.cpu().numpy()
|
|
|
|
decoder_output = decoder_output[0].data.cpu().numpy()
|
2018-11-02 15:13:51 +00:00
|
|
|
alignment = alignments[0].cpu().data.numpy()
|
2019-04-12 14:12:15 +00:00
|
|
|
# plot results
|
2019-03-06 12:11:46 +00:00
|
|
|
if CONFIG.model == "Tacotron":
|
|
|
|
wav = ap.inv_spectrogram(postnet_output.T)
|
|
|
|
else:
|
|
|
|
wav = ap.inv_mel_spectrogram(postnet_output.T)
|
2019-04-12 14:12:15 +00:00
|
|
|
# trim silence
|
|
|
|
if trim_silence:
|
|
|
|
wav = wav[:ap.find_endpoint(wav)]
|
2019-03-06 12:11:46 +00:00
|
|
|
return wav, alignment, decoder_output, postnet_output, stop_tokens
|