2018-04-03 10:24:57 +00:00
|
|
|
import torch
|
2018-03-22 21:35:02 +00:00
|
|
|
from torch.nn import functional
|
2018-03-25 02:22:45 +00:00
|
|
|
from torch import nn
|
2018-07-13 12:50:55 +00:00
|
|
|
from utils.generic_utils import sequence_mask
|
2018-03-22 21:06:54 +00:00
|
|
|
|
|
|
|
|
2018-07-13 12:50:55 +00:00
|
|
|
class L1LossMasked(nn.Module):
|
|
|
|
def __init__(self):
|
|
|
|
super(L1LossMasked, self).__init__()
|
2018-03-22 21:06:54 +00:00
|
|
|
|
2018-07-13 12:50:55 +00:00
|
|
|
def forward(self, input, target, length):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
input: A Variable containing a FloatTensor of size
|
|
|
|
(batch, max_len, dim) which contains the
|
|
|
|
unnormalized probability for each class.
|
|
|
|
target: A Variable containing a LongTensor of size
|
|
|
|
(batch, max_len, dim) which contains the index of the true
|
|
|
|
class for each corresponding step.
|
|
|
|
length: A Variable containing a LongTensor of size (batch,)
|
|
|
|
which contains the length of each data in a batch.
|
|
|
|
Returns:
|
|
|
|
loss: An average loss value masked by the length.
|
|
|
|
"""
|
|
|
|
# mask: (batch, max_len, 1)
|
2019-03-23 16:33:47 +00:00
|
|
|
target.requires_grad = False
|
2018-08-02 14:34:17 +00:00
|
|
|
mask = sequence_mask(
|
2018-08-13 13:02:17 +00:00
|
|
|
sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
|
|
|
|
mask = mask.expand_as(input)
|
|
|
|
loss = functional.l1_loss(
|
|
|
|
input * mask, target * mask, reduction="sum")
|
|
|
|
loss = loss / mask.sum()
|
2018-07-13 12:50:55 +00:00
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
class MSELossMasked(nn.Module):
|
2018-03-25 02:22:45 +00:00
|
|
|
def __init__(self):
|
2018-07-13 12:50:55 +00:00
|
|
|
super(MSELossMasked, self).__init__()
|
2018-04-03 10:24:57 +00:00
|
|
|
|
2018-03-25 02:22:45 +00:00
|
|
|
def forward(self, input, target, length):
|
|
|
|
"""
|
|
|
|
Args:
|
2018-03-29 01:20:56 +00:00
|
|
|
input: A Variable containing a FloatTensor of size
|
|
|
|
(batch, max_len, dim) which contains the
|
2018-03-25 02:22:45 +00:00
|
|
|
unnormalized probability for each class.
|
|
|
|
target: A Variable containing a LongTensor of size
|
2018-03-29 01:20:56 +00:00
|
|
|
(batch, max_len, dim) which contains the index of the true
|
2018-03-25 02:22:45 +00:00
|
|
|
class for each corresponding step.
|
|
|
|
length: A Variable containing a LongTensor of size (batch,)
|
|
|
|
which contains the length of each data in a batch.
|
|
|
|
Returns:
|
|
|
|
loss: An average loss value masked by the length.
|
|
|
|
"""
|
|
|
|
# mask: (batch, max_len, 1)
|
2019-03-23 16:33:47 +00:00
|
|
|
target.requires_grad = False
|
2018-08-02 14:34:17 +00:00
|
|
|
mask = sequence_mask(
|
2019-03-06 12:10:05 +00:00
|
|
|
sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
|
|
|
|
mask = mask.expand_as(input)
|
|
|
|
loss = functional.mse_loss(
|
|
|
|
input * mask, target * mask, reduction="sum")
|
|
|
|
loss = loss / mask.sum()
|
2018-04-03 10:24:57 +00:00
|
|
|
return loss
|
2019-03-06 12:10:05 +00:00
|
|
|
|