2019-11-11 10:30:23 +00:00
|
|
|
import librosa
|
|
|
|
import soundfile as sf
|
|
|
|
import numpy as np
|
|
|
|
import scipy.io
|
|
|
|
import scipy.signal
|
|
|
|
|
2020-03-17 12:27:25 +00:00
|
|
|
from TTS.utils.data import StandardScaler
|
|
|
|
|
2019-11-11 10:30:23 +00:00
|
|
|
|
|
|
|
class AudioProcessor(object):
|
|
|
|
def __init__(self,
|
|
|
|
sample_rate=None,
|
|
|
|
num_mels=None,
|
|
|
|
min_level_db=None,
|
|
|
|
frame_shift_ms=None,
|
|
|
|
frame_length_ms=None,
|
2020-02-12 22:54:33 +00:00
|
|
|
hop_length=None,
|
|
|
|
win_length=None,
|
2019-11-11 10:30:23 +00:00
|
|
|
ref_level_db=None,
|
|
|
|
num_freq=None,
|
|
|
|
power=None,
|
2019-11-12 11:42:42 +00:00
|
|
|
preemphasis=0.0,
|
2019-11-11 10:30:23 +00:00
|
|
|
signal_norm=None,
|
|
|
|
symmetric_norm=None,
|
|
|
|
max_norm=None,
|
|
|
|
mel_fmin=None,
|
|
|
|
mel_fmax=None,
|
|
|
|
clip_norm=True,
|
|
|
|
griffin_lim_iters=None,
|
|
|
|
do_trim_silence=False,
|
2020-02-03 13:16:40 +00:00
|
|
|
trim_db=60,
|
2020-03-24 00:30:46 +00:00
|
|
|
do_sound_norm=False,
|
2020-03-17 12:27:25 +00:00
|
|
|
stats_path=None,
|
2019-11-11 10:30:23 +00:00
|
|
|
**_):
|
|
|
|
|
|
|
|
print(" > Setting up Audio Processor...")
|
2020-03-09 20:04:13 +00:00
|
|
|
# setup class attributed
|
2019-11-11 10:30:23 +00:00
|
|
|
self.sample_rate = sample_rate
|
|
|
|
self.num_mels = num_mels
|
|
|
|
self.min_level_db = min_level_db or 0
|
|
|
|
self.frame_shift_ms = frame_shift_ms
|
|
|
|
self.frame_length_ms = frame_length_ms
|
|
|
|
self.ref_level_db = ref_level_db
|
|
|
|
self.num_freq = num_freq
|
|
|
|
self.power = power
|
|
|
|
self.preemphasis = preemphasis
|
|
|
|
self.griffin_lim_iters = griffin_lim_iters
|
|
|
|
self.signal_norm = signal_norm
|
|
|
|
self.symmetric_norm = symmetric_norm
|
|
|
|
self.mel_fmin = mel_fmin or 0
|
|
|
|
self.mel_fmax = mel_fmax
|
|
|
|
self.max_norm = 1.0 if max_norm is None else float(max_norm)
|
|
|
|
self.clip_norm = clip_norm
|
|
|
|
self.do_trim_silence = do_trim_silence
|
2020-02-03 13:16:40 +00:00
|
|
|
self.trim_db = trim_db
|
2020-03-24 00:30:46 +00:00
|
|
|
self.do_sound_norm = do_sound_norm
|
2020-03-17 12:27:25 +00:00
|
|
|
self.stats_path = stats_path
|
2020-03-09 20:05:10 +00:00
|
|
|
# setup stft parameters
|
2020-02-12 22:54:33 +00:00
|
|
|
if hop_length is None:
|
|
|
|
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
|
|
|
|
else:
|
|
|
|
self.hop_length = hop_length
|
|
|
|
self.win_length = win_length
|
|
|
|
self.n_fft = (self.num_freq - 1) * 2
|
2019-11-12 11:42:42 +00:00
|
|
|
assert min_level_db != 0.0, " [!] min_level_db is 0"
|
2019-11-11 10:30:23 +00:00
|
|
|
members = vars(self)
|
|
|
|
for key, value in members.items():
|
|
|
|
print(" | > {}:{}".format(key, value))
|
2020-03-09 20:05:10 +00:00
|
|
|
# create spectrogram utils
|
|
|
|
self.mel_basis = self._build_mel_basis()
|
|
|
|
self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
|
2020-03-17 12:27:25 +00:00
|
|
|
# setup scaler
|
|
|
|
if stats_path:
|
|
|
|
mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
|
2020-04-23 13:46:45 +00:00
|
|
|
self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
|
2020-03-17 12:27:25 +00:00
|
|
|
self.signal_norm = True
|
|
|
|
self.max_norm = None
|
|
|
|
self.clip_norm = None
|
|
|
|
self.symmetric_norm = None
|
2019-11-11 10:30:23 +00:00
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
### setting up the parameters ###
|
2019-11-11 10:30:23 +00:00
|
|
|
def _build_mel_basis(self, ):
|
|
|
|
if self.mel_fmax is not None:
|
|
|
|
assert self.mel_fmax <= self.sample_rate // 2
|
|
|
|
return librosa.filters.mel(
|
|
|
|
self.sample_rate,
|
2020-01-27 14:42:56 +00:00
|
|
|
self.n_fft,
|
2019-11-11 10:30:23 +00:00
|
|
|
n_mels=self.num_mels,
|
|
|
|
fmin=self.mel_fmin,
|
|
|
|
fmax=self.mel_fmax)
|
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
def _stft_parameters(self, ):
|
|
|
|
"""Compute necessary stft parameters with given time values"""
|
|
|
|
n_fft = (self.num_freq - 1) * 2
|
|
|
|
factor = self.frame_length_ms / self.frame_shift_ms
|
|
|
|
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
|
|
|
|
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
|
|
|
|
win_length = int(hop_length * factor)
|
|
|
|
return n_fft, hop_length, win_length
|
2020-03-17 12:27:25 +00:00
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
### normalization ###
|
2019-11-11 10:30:23 +00:00
|
|
|
def _normalize(self, S):
|
|
|
|
"""Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]"""
|
|
|
|
#pylint: disable=no-else-return
|
2020-03-17 12:27:25 +00:00
|
|
|
S = S.copy()
|
2019-11-11 10:30:23 +00:00
|
|
|
if self.signal_norm:
|
2020-03-17 12:27:25 +00:00
|
|
|
# mean-var scaling
|
|
|
|
if hasattr(self, 'mel_scaler'):
|
|
|
|
if S.shape[0] == self.num_mels:
|
2020-04-23 13:46:45 +00:00
|
|
|
return self.mel_scaler.transform(S.T).T
|
2020-03-17 12:27:25 +00:00
|
|
|
elif S.shape[0] == self.n_fft / 2:
|
|
|
|
return self.linear_scaler.transform(S.T).T
|
|
|
|
else:
|
|
|
|
raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
|
|
|
|
# range normalization
|
2020-03-17 17:24:05 +00:00
|
|
|
S -= self.ref_level_db # discard certain range of DB assuming it is air noise
|
2020-03-26 20:10:37 +00:00
|
|
|
S_norm = ((S - self.min_level_db) / (-self.min_level_db))
|
2019-11-11 10:30:23 +00:00
|
|
|
if self.symmetric_norm:
|
|
|
|
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
|
|
|
|
if self.clip_norm:
|
|
|
|
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm)
|
|
|
|
return S_norm
|
|
|
|
else:
|
|
|
|
S_norm = self.max_norm * S_norm
|
|
|
|
if self.clip_norm:
|
|
|
|
S_norm = np.clip(S_norm, 0, self.max_norm)
|
|
|
|
return S_norm
|
|
|
|
else:
|
|
|
|
return S
|
|
|
|
|
|
|
|
def _denormalize(self, S):
|
|
|
|
"""denormalize values"""
|
|
|
|
#pylint: disable=no-else-return
|
2020-03-17 12:27:25 +00:00
|
|
|
S_denorm = S.copy()
|
2019-11-11 10:30:23 +00:00
|
|
|
if self.signal_norm:
|
2020-03-17 12:27:25 +00:00
|
|
|
# mean-var scaling
|
|
|
|
if hasattr(self, 'mel_scaler'):
|
|
|
|
if S_denorm.shape[0] == self.num_mels:
|
2020-04-23 13:46:45 +00:00
|
|
|
return self.mel_scaler.inverse_transform(S_denorm.T).T
|
2020-03-17 12:27:25 +00:00
|
|
|
elif S_denorm.shape[0] == self.n_fft / 2:
|
|
|
|
return self.linear_scaler.inverse_transform(S_denorm.T).T
|
|
|
|
else:
|
|
|
|
raise RuntimeError(' [!] Mean-Var stats does not match the given feature dimensions.')
|
2019-11-11 10:30:23 +00:00
|
|
|
if self.symmetric_norm:
|
|
|
|
if self.clip_norm:
|
|
|
|
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)
|
|
|
|
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
|
2020-03-17 17:24:05 +00:00
|
|
|
return S_denorm + self.ref_level_db
|
2019-11-11 10:30:23 +00:00
|
|
|
else:
|
|
|
|
if self.clip_norm:
|
|
|
|
S_denorm = np.clip(S_denorm, 0, self.max_norm)
|
|
|
|
S_denorm = (S_denorm * -self.min_level_db /
|
|
|
|
self.max_norm) + self.min_level_db
|
2020-03-17 17:24:05 +00:00
|
|
|
return S_denorm + self.ref_level_db
|
2019-11-11 10:30:23 +00:00
|
|
|
else:
|
2020-03-17 12:27:25 +00:00
|
|
|
return S_denorm
|
|
|
|
|
|
|
|
### Mean-STD scaling ###
|
|
|
|
def load_stats(self, stats_path):
|
2020-05-20 14:27:48 +00:00
|
|
|
stats = np.load(stats_path, allow_pickle=True).item() #pylint: disable=unexpected-keyword-arg
|
2020-03-17 12:27:25 +00:00
|
|
|
mel_mean = stats['mel_mean']
|
|
|
|
mel_std = stats['mel_std']
|
|
|
|
linear_mean = stats['linear_mean']
|
|
|
|
linear_std = stats['linear_std']
|
|
|
|
stats_config = stats['audio_config']
|
|
|
|
# check all audio parameters used for computing stats
|
2020-03-24 00:30:46 +00:00
|
|
|
skip_parameters = ['griffin_lim_iters', 'stats_path', 'do_trim_silence', 'ref_level_db', 'power']
|
2020-03-17 12:27:25 +00:00
|
|
|
for key in stats_config.keys():
|
|
|
|
if key in skip_parameters:
|
|
|
|
continue
|
2020-04-23 13:46:45 +00:00
|
|
|
assert stats_config[key] == self.__dict__[key],\
|
|
|
|
f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
|
2020-03-17 12:27:25 +00:00
|
|
|
return mel_mean, mel_std, linear_mean, linear_std, stats_config
|
2020-04-23 13:46:45 +00:00
|
|
|
|
2020-03-17 12:27:25 +00:00
|
|
|
# pylint: disable=attribute-defined-outside-init
|
|
|
|
def setup_scaler(self, mel_mean, mel_std, linear_mean, linear_std):
|
|
|
|
self.mel_scaler = StandardScaler()
|
|
|
|
self.mel_scaler.set_stats(mel_mean, mel_std)
|
|
|
|
self.linear_scaler = StandardScaler()
|
|
|
|
self.linear_scaler.set_stats(linear_mean, linear_std)
|
2019-11-11 10:30:23 +00:00
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
### DB and AMP conversion ###
|
2020-04-23 13:46:45 +00:00
|
|
|
# pylint: disable=no-self-use
|
2019-11-11 10:30:23 +00:00
|
|
|
def _amp_to_db(self, x):
|
2020-03-17 12:27:25 +00:00
|
|
|
return 20 * np.log10(np.maximum(1e-5, x))
|
2019-11-11 10:30:23 +00:00
|
|
|
|
2020-04-23 13:46:45 +00:00
|
|
|
# pylint: disable=no-self-use
|
2020-03-09 20:05:10 +00:00
|
|
|
def _db_to_amp(self, x):
|
2019-11-11 10:30:23 +00:00
|
|
|
return np.power(10.0, x * 0.05)
|
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
### Preemphasis ###
|
2019-11-11 10:30:23 +00:00
|
|
|
def apply_preemphasis(self, x):
|
|
|
|
if self.preemphasis == 0:
|
2019-11-12 11:42:42 +00:00
|
|
|
raise RuntimeError(" [!] Preemphasis is set 0.0.")
|
2019-11-11 10:30:23 +00:00
|
|
|
return scipy.signal.lfilter([1, -self.preemphasis], [1], x)
|
|
|
|
|
|
|
|
def apply_inv_preemphasis(self, x):
|
|
|
|
if self.preemphasis == 0:
|
2019-11-12 11:42:42 +00:00
|
|
|
raise RuntimeError(" [!] Preemphasis is set 0.0.")
|
2019-11-11 10:30:23 +00:00
|
|
|
return scipy.signal.lfilter([1], [1, -self.preemphasis], x)
|
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
### SPECTROGRAMs ###
|
|
|
|
def _linear_to_mel(self, spectrogram):
|
|
|
|
return np.dot(self.mel_basis, spectrogram)
|
|
|
|
|
|
|
|
def _mel_to_linear(self, mel_spec):
|
|
|
|
return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))
|
|
|
|
|
2019-11-11 10:30:23 +00:00
|
|
|
def spectrogram(self, y):
|
|
|
|
if self.preemphasis != 0:
|
|
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
|
|
else:
|
|
|
|
D = self._stft(y)
|
2020-03-17 17:24:05 +00:00
|
|
|
S = self._amp_to_db(np.abs(D))
|
2019-11-11 10:30:23 +00:00
|
|
|
return self._normalize(S)
|
|
|
|
|
|
|
|
def melspectrogram(self, y):
|
|
|
|
if self.preemphasis != 0:
|
|
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
|
|
else:
|
|
|
|
D = self._stft(y)
|
2020-03-17 17:24:05 +00:00
|
|
|
S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
|
2019-11-11 10:30:23 +00:00
|
|
|
return self._normalize(S)
|
|
|
|
|
|
|
|
def inv_spectrogram(self, spectrogram):
|
|
|
|
"""Converts spectrogram to waveform using librosa"""
|
|
|
|
S = self._denormalize(spectrogram)
|
2020-03-17 17:24:05 +00:00
|
|
|
S = self._db_to_amp(S)
|
2019-11-11 10:30:23 +00:00
|
|
|
# Reconstruct phase
|
|
|
|
if self.preemphasis != 0:
|
|
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
|
|
|
|
return self._griffin_lim(S**self.power)
|
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
def inv_melspectrogram(self, mel_spectrogram):
|
|
|
|
'''Converts melspectrogram to waveform using librosa'''
|
2019-11-11 10:30:23 +00:00
|
|
|
D = self._denormalize(mel_spectrogram)
|
2020-03-17 17:24:05 +00:00
|
|
|
S = self._db_to_amp(D)
|
2019-11-11 10:30:23 +00:00
|
|
|
S = self._mel_to_linear(S) # Convert back to linear
|
|
|
|
if self.preemphasis != 0:
|
|
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
|
|
|
|
return self._griffin_lim(S**self.power)
|
|
|
|
|
|
|
|
def out_linear_to_mel(self, linear_spec):
|
|
|
|
S = self._denormalize(linear_spec)
|
2020-03-17 17:24:05 +00:00
|
|
|
S = self._db_to_amp(S)
|
2019-11-11 10:30:23 +00:00
|
|
|
S = self._linear_to_mel(np.abs(S))
|
2020-03-17 17:24:05 +00:00
|
|
|
S = self._amp_to_db(S)
|
2019-11-11 10:30:23 +00:00
|
|
|
mel = self._normalize(S)
|
|
|
|
return mel
|
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
### STFT and ISTFT ###
|
2019-11-11 10:30:23 +00:00
|
|
|
def _stft(self, y):
|
|
|
|
return librosa.stft(
|
|
|
|
y=y,
|
|
|
|
n_fft=self.n_fft,
|
|
|
|
hop_length=self.hop_length,
|
|
|
|
win_length=self.win_length,
|
2020-01-27 14:42:56 +00:00
|
|
|
pad_mode='constant'
|
2019-11-11 10:30:23 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def _istft(self, y):
|
|
|
|
return librosa.istft(
|
|
|
|
y, hop_length=self.hop_length, win_length=self.win_length)
|
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
def _griffin_lim(self, S):
|
|
|
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
|
|
|
S_complex = np.abs(S).astype(np.complex)
|
|
|
|
y = self._istft(S_complex * angles)
|
|
|
|
for _ in range(self.griffin_lim_iters):
|
|
|
|
angles = np.exp(1j * np.angle(self._stft(y)))
|
|
|
|
y = self._istft(S_complex * angles)
|
|
|
|
return y
|
|
|
|
|
2020-04-23 13:46:45 +00:00
|
|
|
def compute_stft_paddings(self, x, pad_sides=1):
|
2020-03-26 20:10:37 +00:00
|
|
|
'''compute right padding (final frame) or both sides padding (first and final frames)
|
|
|
|
'''
|
|
|
|
assert pad_sides in (1, 2)
|
2020-03-29 21:07:12 +00:00
|
|
|
pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
|
2020-03-26 20:10:37 +00:00
|
|
|
if pad_sides == 1:
|
|
|
|
return 0, pad
|
2020-04-23 13:46:45 +00:00
|
|
|
return pad // 2, pad // 2 + pad % 2
|
2020-03-26 20:10:37 +00:00
|
|
|
|
2020-03-27 13:17:03 +00:00
|
|
|
### Audio Processing ###
|
2019-11-11 10:30:23 +00:00
|
|
|
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
|
|
|
|
window_length = int(self.sample_rate * min_silence_sec)
|
|
|
|
hop_length = int(window_length / 4)
|
|
|
|
threshold = self._db_to_amp(threshold_db)
|
|
|
|
for x in range(hop_length, len(wav) - window_length, hop_length):
|
|
|
|
if np.max(wav[x:x + window_length]) < threshold:
|
|
|
|
return x + hop_length
|
|
|
|
return len(wav)
|
|
|
|
|
|
|
|
def trim_silence(self, wav):
|
|
|
|
""" Trim silent parts with a threshold and 0.01 sec margin """
|
|
|
|
margin = int(self.sample_rate * 0.01)
|
|
|
|
wav = wav[margin:-margin]
|
|
|
|
return librosa.effects.trim(
|
2020-02-03 13:16:40 +00:00
|
|
|
wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]
|
2019-11-11 10:30:23 +00:00
|
|
|
|
2020-03-10 10:30:13 +00:00
|
|
|
@staticmethod
|
|
|
|
def sound_norm(x):
|
2020-03-09 20:05:10 +00:00
|
|
|
return x / abs(x).max() * 0.9
|
|
|
|
|
2020-03-10 10:30:13 +00:00
|
|
|
### save and load ###
|
2020-03-09 20:05:10 +00:00
|
|
|
def load_wav(self, filename, sr=None):
|
|
|
|
if sr is None:
|
|
|
|
x, sr = sf.read(filename)
|
|
|
|
else:
|
|
|
|
x, sr = librosa.load(filename, sr=sr)
|
2020-03-10 10:30:13 +00:00
|
|
|
if self.do_trim_silence:
|
|
|
|
try:
|
|
|
|
x = self.trim_silence(x)
|
|
|
|
except ValueError:
|
|
|
|
print(f' [!] File cannot be trimmed for silence - {filename}')
|
|
|
|
assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr)
|
|
|
|
if self.do_sound_norm:
|
|
|
|
x = self.sound_norm(x)
|
2020-03-09 20:05:10 +00:00
|
|
|
return x
|
2020-03-10 10:30:13 +00:00
|
|
|
|
2020-03-09 20:05:10 +00:00
|
|
|
def save_wav(self, wav, path):
|
|
|
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
|
|
|
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
|
|
|
|
|
2019-11-11 10:30:23 +00:00
|
|
|
@staticmethod
|
|
|
|
def mulaw_encode(wav, qc):
|
|
|
|
mu = 2 ** qc - 1
|
|
|
|
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
|
|
|
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
|
|
|
|
# Quantize signal to the specified number of levels.
|
|
|
|
signal = (signal + 1) / 2 * mu + 0.5
|
|
|
|
return np.floor(signal,)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def mulaw_decode(wav, qc):
|
|
|
|
"""Recovers waveform from quantized values."""
|
|
|
|
mu = 2 ** qc - 1
|
|
|
|
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def encode_16bits(x):
|
|
|
|
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def quantize(x, bits):
|
|
|
|
return (x + 1.) * (2**bits - 1) / 2
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def dequantize(x, bits):
|
|
|
|
return 2 * x / (2**bits - 1) - 1
|