TTS/models/tacotron.py

145 lines
6.2 KiB
Python
Raw Normal View History

2018-01-22 14:59:41 +00:00
# coding: utf-8
import torch
2018-01-22 14:59:41 +00:00
from torch import nn
from TTS.layers.tacotron import Encoder, Decoder, PostCBHG
from TTS.utils.generic_utils import sequence_mask
from TTS.layers.gst_layers import GST
2018-01-22 14:59:41 +00:00
2018-02-13 16:08:23 +00:00
2018-01-22 14:59:41 +00:00
class Tacotron(nn.Module):
2018-08-02 14:34:17 +00:00
def __init__(self,
2019-01-21 13:52:40 +00:00
num_chars,
2019-06-26 10:59:14 +00:00
num_speakers,
r=5,
2018-08-02 14:34:17 +00:00
linear_dim=1025,
mel_dim=80,
memory_size=5,
2019-03-25 23:52:47 +00:00
attn_win=False,
gst=False,
attn_norm="sigmoid",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
2019-06-03 22:39:29 +00:00
forward_attn_mask=False,
location_attn=True,
separate_stopnet=True):
2018-01-22 14:59:41 +00:00
super(Tacotron, self).__init__()
2018-03-22 19:34:16 +00:00
self.r = r
2018-01-22 14:59:41 +00:00
self.mel_dim = mel_dim
self.linear_dim = linear_dim
self.gst = gst
self.num_speakers = num_speakers
self.embedding = nn.Embedding(num_chars, 256)
self.embedding.weight.data.normal_(0, 0.3)
decoder_dim = 512 if num_speakers > 1 else 256
encoder_dim = 512 if num_speakers > 1 else 256
proj_speaker_dim = 80 if num_speakers > 1 else 0
# boilerplate model
self.encoder = Encoder(encoder_dim)
self.decoder = Decoder(decoder_dim, mel_dim, r, memory_size, attn_win,
attn_norm, prenet_type, prenet_dropout,
2019-06-03 22:39:29 +00:00
forward_attn, trans_agent, forward_attn_mask,
location_attn, separate_stopnet,
proj_speaker_dim)
self.postnet = PostCBHG(mel_dim)
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2,
linear_dim)
# speaker embedding layers
if num_speakers > 1:
self.speaker_embedding = nn.Embedding(num_speakers, 256)
self.speaker_embedding.weight.data.normal_(0, 0.3)
self.speaker_project_mel = nn.Sequential(
nn.Linear(256, proj_speaker_dim), nn.Tanh())
self.speaker_embeddings = None
self.speaker_embeddings_projected = None
# global style token layers
if self.gst:
gst_embedding_dim = 256
self.gst_layer = GST(num_mel=80,
num_heads=4,
num_style_tokens=10,
embedding_dim=gst_embedding_dim)
def _init_states(self):
self.speaker_embeddings = None
self.speaker_embeddings_projected = None
def compute_speaker_embedding(self, speaker_ids):
if hasattr(self, "speaker_embedding") and speaker_ids is None:
raise RuntimeError(
" [!] Model has speaker embedding layer but speaker_id is not provided"
)
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
self.speaker_embeddings = self._compute_speaker_embedding(
speaker_ids)
self.speaker_embeddings_projected = self.speaker_project_mel(
self.speaker_embeddings).squeeze(1)
def compute_gst(self, inputs, mel_specs):
gst_outputs = self.gst_layer(mel_specs)
inputs = self._add_speaker_embedding(inputs, gst_outputs)
return inputs
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
2018-01-22 14:59:41 +00:00
B = characters.size(0)
mask = sequence_mask(text_lengths).to(characters.device)
2018-01-22 14:59:41 +00:00
inputs = self.embedding(characters)
self._init_states()
self.compute_speaker_embedding(speaker_ids)
if self.num_speakers > 1:
inputs = self._concat_speaker_embedding(inputs,
self.speaker_embeddings)
encoder_outputs = self.encoder(inputs)
if self.gst:
encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
if self.num_speakers > 1:
encoder_outputs = self._concat_speaker_embedding(
encoder_outputs, self.speaker_embeddings)
mel_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, mask,
self.speaker_embeddings_projected)
2018-01-22 14:59:41 +00:00
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens
2019-03-05 12:25:50 +00:00
def inference(self, characters, speaker_ids=None, style_mel=None):
2019-03-05 12:25:50 +00:00
B = characters.size(0)
inputs = self.embedding(characters)
self._init_states()
self.compute_speaker_embedding(speaker_ids)
if self.num_speakers > 1:
inputs = self._concat_speaker_embedding(inputs,
self.speaker_embeddings)
2019-03-05 12:25:50 +00:00
encoder_outputs = self.encoder(inputs)
if self.gst and style_mel is not None:
encoder_outputs = self.compute_gst(encoder_outputs, style_mel)
if self.num_speakers > 1:
encoder_outputs = self._concat_speaker_embedding(
encoder_outputs, self.speaker_embeddings)
2019-03-05 12:25:50 +00:00
mel_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs, self.speaker_embeddings_projected)
2019-03-05 12:25:50 +00:00
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments, stop_tokens
def _compute_speaker_embedding(self, speaker_ids):
speaker_embeddings = self.speaker_embedding(speaker_ids)
return speaker_embeddings.unsqueeze_(1)
@staticmethod
def _add_speaker_embedding(outputs, speaker_embeddings):
speaker_embeddings_ = speaker_embeddings.expand(
outputs.size(0), outputs.size(1), -1)
outputs = outputs + speaker_embeddings_
return outputs
@staticmethod
def _concat_speaker_embedding(outputs, speaker_embeddings):
speaker_embeddings_ = speaker_embeddings.expand(
outputs.size(0), outputs.size(1), -1)
outputs = torch.cat([outputs, speaker_embeddings_], dim=-1)
return outputs