from llm_utils import create_chat_completion next_key = 0 agents = {} # key, (task, full_message_history, model) # Create new GPT agent # TODO: Centralise use of create_chat_completion() to globally enforce token limit def create_agent(task, prompt, model): """Create a new agent and return its key""" global next_key global agents messages = [{"role": "user", "content": prompt}, ] # Start GPT instance agent_reply = create_chat_completion( model=model, messages=messages, ) # Update full message history messages.append({"role": "assistant", "content": agent_reply}) key = next_key # This is done instead of len(agents) to make keys unique even if agents # are deleted next_key += 1 agents[key] = (task, messages, model) return key, agent_reply def message_agent(key, message): """Send a message to an agent and return its response""" global agents task, messages, model = agents[int(key)] # Add user message to message history before sending to agent messages.append({"role": "user", "content": message}) # Start GPT instance agent_reply = create_chat_completion( model=model, messages=messages, ) # Update full message history messages.append({"role": "assistant", "content": agent_reply}) return agent_reply def list_agents(): """Return a list of all agents""" global agents # Return a list of agent keys and their tasks return [(key, task) for key, (task, _, _) in agents.items()] def delete_agent(key): """Delete an agent and return True if successful, False otherwise""" global agents try: del agents[int(key)] return True except KeyError: return False