tweak(docs): Replace all instances of "Node" with "Block". (#7416)
Replace all instances of "Node" with "Block" in the doccumentation.bently/fix-discord-message-block
parent
58313d9ae7
commit
d3dae2264d
|
@ -1,172 +1,172 @@
|
|||
# Contributing to AutoGPT Agent Server: Creating Nodes!
|
||||
|
||||
This guide will walk you through the process of creating a new node (also called a block) for the AutoGPT Agent Server. We'll use the GetWikipediaSummary node as an example.
|
||||
|
||||
## Understanding Nodes
|
||||
|
||||
Nodes are reusable components that can be connected to form a graph representing an agent's behavior. Each node has inputs, outputs, and a specific function it performs.
|
||||
|
||||
## Creating a New Node
|
||||
|
||||
To create a new node, follow these steps:
|
||||
|
||||
1. **Create a new Python file** in the `autogpt_server/blocks` directory. Name it descriptively and use snake_case. For example: `get_wikipedia_summary.py`.
|
||||
|
||||
2. **Import necessary modules and create a class that inherits from `Block`**. Make sure to include all necessary imports for your node. Every node should contain:
|
||||
|
||||
```python
|
||||
from autogpt_server.data.block import Block, BlockSchema, BlockOutput
|
||||
```
|
||||
|
||||
Example for the Wikipedia summary node:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from autogpt_server.data.block import Block, BlockSchema, BlockOutput
|
||||
|
||||
class GetWikipediaSummary(Block):
|
||||
# Node implementation will go here
|
||||
```
|
||||
|
||||
3. **Define the input and output schemas** using `BlockSchema`. These schemas specify the data structure that the node expects to receive (input) and produce (output).
|
||||
|
||||
- The input schema defines the structure of the data the node will process. Each field in the schema represents a required piece of input data.
|
||||
- The output schema defines the structure of the data the node will return after processing. Each field in the schema represents a piece of output data.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
class Input(BlockSchema):
|
||||
topic: str # The topic to get the Wikipedia summary for
|
||||
|
||||
class Output(BlockSchema):
|
||||
summary: str # The summary of the topic from Wikipedia
|
||||
```
|
||||
|
||||
4. **Implement the `__init__` method**:
|
||||
|
||||
```python
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="h5e7f8g9-1b2c-3d4e-5f6g-7h8i9j0k1l2m", # Unique ID for the node
|
||||
input_schema=GetWikipediaSummary.Input, # Assign input schema
|
||||
output_schema=GetWikipediaSummary.Output, # Assign output schema
|
||||
|
||||
# Provide sample input and output for testing the node
|
||||
|
||||
test_input={"topic": "Artificial Intelligence"},
|
||||
test_output={"summary": "Artificial intelligence (AI) is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and animals."},
|
||||
)
|
||||
```
|
||||
|
||||
- `id`: A unique identifier for the node.
|
||||
- `input_schema` and `output_schema`: Define the structure of the input and output data.
|
||||
- `test_input` and `test_output`: Provide sample input and output data for testing the node.
|
||||
|
||||
5. **Implement the `run` method**, which contains the main logic of the node:
|
||||
|
||||
```python
|
||||
def run(self, input_data: Input) -> BlockOutput:
|
||||
try:
|
||||
# Make the request to Wikipedia API
|
||||
response = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{input_data.topic}")
|
||||
response.raise_for_status()
|
||||
summary_data = response.json()
|
||||
|
||||
# Output the summary
|
||||
yield "summary", summary_data['extract']
|
||||
|
||||
except requests.exceptions.HTTPError as http_err:
|
||||
raise ValueError(f"HTTP error occurred: {http_err}")
|
||||
except requests.RequestException as e:
|
||||
raise ValueError(f"Request to Wikipedia API failed: {e}")
|
||||
except KeyError as e:
|
||||
raise ValueError(f"Error processing Wikipedia data: {e}")
|
||||
```
|
||||
|
||||
- **Try block**: Contains the main logic to fetch and process the Wikipedia summary.
|
||||
- **API request**: Send a GET request to the Wikipedia API.
|
||||
- **Error handling**: Handle various exceptions that might occur during the API request and data processing.
|
||||
- **Yield**: Use `yield` to output the results.
|
||||
|
||||
6. **Register the new node** by adding it to the `__init__.py` file in the `autogpt_server/blocks` directory. This step makes your new node available to the rest of the server.
|
||||
|
||||
- Open the `__init__.py` file in the `autogpt_server/blocks` directory.
|
||||
- Add an import statement for your new node at the top of the file.
|
||||
- Add the new node to the `AVAILABLE_BLOCKS` and `__all__` lists.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
from autogpt_server.blocks import sample, reddit, text, ai, wikipedia, discord, get_wikipedia_summary # Import your new node
|
||||
from autogpt_server.data.block import Block
|
||||
|
||||
AVAILABLE_BLOCKS = {
|
||||
block.id: block
|
||||
for block in [v() for v in Block.__subclasses__()]
|
||||
}
|
||||
|
||||
__all__ = ["ai", "sample", "reddit", "text", "AVAILABLE_BLOCKS", "wikipedia", "discord", "get_wikipedia_summary"]
|
||||
```
|
||||
|
||||
- The import statement ensures your new node is included in the module.
|
||||
- The `AVAILABLE_BLOCKS` dictionary includes all blocks by their ID.
|
||||
- The `__all__` list specifies all public objects that the module exports.
|
||||
|
||||
### Full Code example
|
||||
|
||||
Here is the complete implementation of the `GetWikipediaSummary` nodes:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from autogpt_server.data.block import Block, BlockSchema, BlockOutput
|
||||
|
||||
class GetWikipediaSummary(Block):
|
||||
# Define the input schema with the required field 'topic'
|
||||
class Input(BlockSchema):
|
||||
topic: str # The topic to get the Wikipedia summary for
|
||||
|
||||
# Define the output schema with the field 'summary'
|
||||
class Output(BlockSchema):
|
||||
summary: str # The summary of the topic from Wikipedia
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="h5e7f8g9-1b2c-3d4e-5f6g-7h8i9j0k1l2m", # Unique ID for the node
|
||||
input_schema=GetWikipediaSummary.Input, # Assign input schema
|
||||
output_schema=GetWikipediaSummary.Output, # Assign output schema
|
||||
|
||||
# Provide sample input and output for testing the node
|
||||
|
||||
test_input={"topic": "Artificial Intelligence"},
|
||||
test_output={"summary": "Artificial intelligence (AI) is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and animals."},
|
||||
)
|
||||
|
||||
def run(self, input_data: Input) -> BlockOutput:
|
||||
try:
|
||||
# Make the request to Wikipedia API
|
||||
response = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{input_data.topic}")
|
||||
response.raise_for_status()
|
||||
summary_data = response.json()
|
||||
|
||||
# Output the summary
|
||||
yield "summary", summary_data['extract']
|
||||
|
||||
except requests.exceptions.HTTPError as http_err:
|
||||
raise ValueError(f"HTTP error occurred: {http_err}")
|
||||
except requests.RequestException as e:
|
||||
raise ValueError(f"Request to Wikipedia API failed: {e}")
|
||||
except KeyError as e:
|
||||
raise ValueError(f"Error processing Wikipedia data: {e}")
|
||||
```
|
||||
|
||||
## Key Points to Remember
|
||||
|
||||
- **Unique ID**: Give your node a unique ID in the `__init__` method.
|
||||
- **Input and Output Schemas**: Define clear input and output schemas.
|
||||
- **Error Handling**: Implement error handling in the `run` method.
|
||||
- **Output Results**: Use `yield` to output results in the `run` method.
|
||||
- **Register the Node**: Add your new node to the `__init__.py` file to make it available to the server.
|
||||
- **Testing**: Provide test input and output in the `__init__` method for automatic testing.
|
||||
|
||||
By following these steps, you can create new nodes that extend the functionality of the AutoGPT Agent Server.
|
||||
# Contributing to AutoGPT Agent Server: Creating Blocks!
|
||||
|
||||
This guide will walk you through the process of creating a new block for the AutoGPT Agent Server. We'll use the GetWikipediaSummary block as an example.
|
||||
|
||||
## Understanding Blocks
|
||||
|
||||
Blocks are reusable components that can be connected to form a graph representing an agent's behavior. Each block has inputs, outputs, and a specific function it performs.
|
||||
|
||||
## Creating a New Block
|
||||
|
||||
To create a new block, follow these steps:
|
||||
|
||||
1. **Create a new Python file** in the `autogpt_server/blocks` directory. Name it descriptively and use snake_case. For example: `get_wikipedia_summary.py`.
|
||||
|
||||
2. **Import necessary modules and create a class that inherits from `Block`**. Make sure to include all necessary imports for your block. Every block should contain:
|
||||
|
||||
```python
|
||||
from autogpt_server.data.block import Block, BlockSchema, BlockOutput
|
||||
```
|
||||
|
||||
Example for the Wikipedia summary block:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from autogpt_server.data.block import Block, BlockSchema, BlockOutput
|
||||
|
||||
class GetWikipediaSummary(Block):
|
||||
# Block implementation will go here
|
||||
```
|
||||
|
||||
3. **Define the input and output schemas** using `BlockSchema`. These schemas specify the data structure that the block expects to receive (input) and produce (output).
|
||||
|
||||
- The input schema defines the structure of the data the block will process. Each field in the schema represents a required piece of input data.
|
||||
- The output schema defines the structure of the data the block will return after processing. Each field in the schema represents a piece of output data.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
class Input(BlockSchema):
|
||||
topic: str # The topic to get the Wikipedia summary for
|
||||
|
||||
class Output(BlockSchema):
|
||||
summary: str # The summary of the topic from Wikipedia
|
||||
```
|
||||
|
||||
4. **Implement the `__init__` method**:
|
||||
|
||||
```python
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="h5e7f8g9-1b2c-3d4e-5f6g-7h8i9j0k1l2m", # Unique ID for the block
|
||||
input_schema=GetWikipediaSummary.Input, # Assign input schema
|
||||
output_schema=GetWikipediaSummary.Output, # Assign output schema
|
||||
|
||||
# Provide sample input and output for testing the block
|
||||
|
||||
test_input={"topic": "Artificial Intelligence"},
|
||||
test_output={"summary": "Artificial intelligence (AI) is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and animals."},
|
||||
)
|
||||
```
|
||||
|
||||
- `id`: A unique identifier for the block.
|
||||
- `input_schema` and `output_schema`: Define the structure of the input and output data.
|
||||
- `test_input` and `test_output`: Provide sample input and output data for testing the block.
|
||||
|
||||
5. **Implement the `run` method**, which contains the main logic of the block:
|
||||
|
||||
```python
|
||||
def run(self, input_data: Input) -> BlockOutput:
|
||||
try:
|
||||
# Make the request to Wikipedia API
|
||||
response = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{input_data.topic}")
|
||||
response.raise_for_status()
|
||||
summary_data = response.json()
|
||||
|
||||
# Output the summary
|
||||
yield "summary", summary_data['extract']
|
||||
|
||||
except requests.exceptions.HTTPError as http_err:
|
||||
raise ValueError(f"HTTP error occurred: {http_err}")
|
||||
except requests.RequestException as e:
|
||||
raise ValueError(f"Request to Wikipedia API failed: {e}")
|
||||
except KeyError as e:
|
||||
raise ValueError(f"Error processing Wikipedia data: {e}")
|
||||
```
|
||||
|
||||
- **Try block**: Contains the main logic to fetch and process the Wikipedia summary.
|
||||
- **API request**: Send a GET request to the Wikipedia API.
|
||||
- **Error handling**: Handle various exceptions that might occur during the API request and data processing.
|
||||
- **Yield**: Use `yield` to output the results.
|
||||
|
||||
6. **Register the new block** by adding it to the `__init__.py` file in the `autogpt_server/blocks` directory. This step makes your new block available to the rest of the server.
|
||||
|
||||
- Open the `__init__.py` file in the `autogpt_server/blocks` directory.
|
||||
- Add an import statement for your new block at the top of the file.
|
||||
- Add the new block to the `AVAILABLE_BLOCKS` and `__all__` lists.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
from autogpt_server.blocks import sample, reddit, text, ai, wikipedia, discord, get_wikipedia_summary # Import your new block
|
||||
from autogpt_server.data.block import Block
|
||||
|
||||
AVAILABLE_BLOCKS = {
|
||||
block.id: block
|
||||
for block in [v() for v in Block.__subclasses__()]
|
||||
}
|
||||
|
||||
__all__ = ["ai", "sample", "reddit", "text", "AVAILABLE_BLOCKS", "wikipedia", "discord", "get_wikipedia_summary"]
|
||||
```
|
||||
|
||||
- The import statement ensures your new block is included in the module.
|
||||
- The `AVAILABLE_BLOCKS` dictionary includes all blocks by their ID.
|
||||
- The `__all__` list specifies all public objects that the module exports.
|
||||
|
||||
### Full Code example
|
||||
|
||||
Here is the complete implementation of the `GetWikipediaSummary` blocks:
|
||||
|
||||
```python
|
||||
import requests
|
||||
from autogpt_server.data.block import Block, BlockSchema, BlockOutput
|
||||
|
||||
class GetWikipediaSummary(Block):
|
||||
# Define the input schema with the required field 'topic'
|
||||
class Input(BlockSchema):
|
||||
topic: str # The topic to get the Wikipedia summary for
|
||||
|
||||
# Define the output schema with the field 'summary'
|
||||
class Output(BlockSchema):
|
||||
summary: str # The summary of the topic from Wikipedia
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="h5e7f8g9-1b2c-3d4e-5f6g-7h8i9j0k1l2m", # Unique ID for the block
|
||||
input_schema=GetWikipediaSummary.Input, # Assign input schema
|
||||
output_schema=GetWikipediaSummary.Output, # Assign output schema
|
||||
|
||||
# Provide sample input and output for testing the block
|
||||
|
||||
test_input={"topic": "Artificial Intelligence"},
|
||||
test_output={"summary": "Artificial intelligence (AI) is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and animals."},
|
||||
)
|
||||
|
||||
def run(self, input_data: Input) -> BlockOutput:
|
||||
try:
|
||||
# Make the request to Wikipedia API
|
||||
response = requests.get(f"https://en.wikipedia.org/api/rest_v1/page/summary/{input_data.topic}")
|
||||
response.raise_for_status()
|
||||
summary_data = response.json()
|
||||
|
||||
# Output the summary
|
||||
yield "summary", summary_data['extract']
|
||||
|
||||
except requests.exceptions.HTTPError as http_err:
|
||||
raise ValueError(f"HTTP error occurred: {http_err}")
|
||||
except requests.RequestException as e:
|
||||
raise ValueError(f"Request to Wikipedia API failed: {e}")
|
||||
except KeyError as e:
|
||||
raise ValueError(f"Error processing Wikipedia data: {e}")
|
||||
```
|
||||
|
||||
## Key Points to Remember
|
||||
|
||||
- **Unique ID**: Give your block a unique ID in the `__init__` method.
|
||||
- **Input and Output Schemas**: Define clear input and output schemas.
|
||||
- **Error Handling**: Implement error handling in the `run` method.
|
||||
- **Output Results**: Use `yield` to output results in the `run` method.
|
||||
- **Register the Block**: Add your new block to the `__init__.py` file to make it available to the server.
|
||||
- **Testing**: Provide test input and output in the `__init__` method for automatic testing.
|
||||
|
||||
By following these steps, you can create new blocks that extend the functionality of the AutoGPT Agent Server.
|
|
@ -6,7 +6,7 @@ nav:
|
|||
- Home: index.md
|
||||
|
||||
- The AutoGPT Server 🆕:
|
||||
- Build your own Node: server/new_nodes.md
|
||||
- Build your own Blocks: server/new_blocks.md
|
||||
|
||||
- AutoGPT Agent:
|
||||
- Introduction: AutoGPT/index.md
|
||||
|
|
Loading…
Reference in New Issue