Implement local memory.
parent
ea6b970509
commit
cb14c8d999
|
@ -12,4 +12,5 @@ docker
|
|||
duckduckgo-search
|
||||
google-api-python-client #(https://developers.google.com/custom-search/v1/overview)
|
||||
pinecone-client==2.2.1
|
||||
redis
|
||||
redis
|
||||
orjson
|
|
@ -1,5 +1,6 @@
|
|||
import browse
|
||||
import json
|
||||
from memory.local import LocalCache
|
||||
from memory.pinecone import PineconeMemory
|
||||
from memory.redismem import RedisMemory
|
||||
import datetime
|
||||
|
@ -55,11 +56,14 @@ def get_command(response):
|
|||
def execute_command(command_name, arguments):
|
||||
if cfg.memory_backend == "pinecone":
|
||||
memory = PineconeMemory(cfg=cfg)
|
||||
else:
|
||||
elif cfg.memory_backend == "redis":
|
||||
memory = RedisMemory(cfg=cfg)
|
||||
else:
|
||||
memory = LocalCache(cfg=cfg)
|
||||
|
||||
try:
|
||||
if command_name == "google":
|
||||
|
||||
|
||||
# Check if the Google API key is set and use the official search method
|
||||
# If the API key is not set or has only whitespaces, use the unofficial search method
|
||||
if cfg.google_api_key and (cfg.google_api_key.strip() if cfg.google_api_key else None):
|
||||
|
|
|
@ -65,10 +65,10 @@ class Config(metaclass=Singleton):
|
|||
self.redis_port = os.getenv("REDIS_PORT")
|
||||
self.redis_password = os.getenv("REDIS_PASSWORD")
|
||||
self.wipe_redis_on_start = os.getenv("WIPE_REDIS_ON_START", "True") == 'True'
|
||||
self.memory_index = os.getenv("MEMORY_INDEX", 'gpt')
|
||||
self.memory_index = os.getenv("MEMORY_INDEX", 'auto-gpt')
|
||||
# Note that indexes must be created on db 0 in redis, this is not configureable.
|
||||
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", 'pinecone')
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", 'local')
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import json
|
||||
import random
|
||||
import commands as cmd
|
||||
from memory.local import LocalCache
|
||||
from memory.pinecone import PineconeMemory
|
||||
from memory.redismem import RedisMemory
|
||||
import data
|
||||
|
@ -287,8 +288,10 @@ user_input = "Determine which next command to use, and respond using the format
|
|||
if cfg.memory_backend == "pinecone":
|
||||
memory = PineconeMemory(cfg)
|
||||
memory.clear()
|
||||
else:
|
||||
elif cfg.memory_backend == "redis":
|
||||
memory = RedisMemory(cfg)
|
||||
else:
|
||||
memory = LocalCache(cfg)
|
||||
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
|
||||
|
|
|
@ -0,0 +1,111 @@
|
|||
import dataclasses
|
||||
import orjson
|
||||
from typing import Any, List, Optional
|
||||
import numpy as np
|
||||
import os
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
EMBED_DIM = 1536
|
||||
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
|
||||
|
||||
|
||||
def create_default_embeddings():
|
||||
return np.zeros((0, EMBED_DIM)).astype(np.float32)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CacheContent:
|
||||
texts: List[str] = dataclasses.field(default_factory=list)
|
||||
embeddings: np.ndarray = dataclasses.field(
|
||||
default_factory=create_default_embeddings
|
||||
)
|
||||
|
||||
|
||||
class LocalCache(MemoryProviderSingleton):
|
||||
|
||||
# on load, load our database
|
||||
def __init__(self, cfg) -> None:
|
||||
self.filename = f"{cfg.memory_index}.json"
|
||||
if os.path.exists(self.filename):
|
||||
with open(self.filename, 'rb') as f:
|
||||
loaded = orjson.loads(f.read())
|
||||
self.data = CacheContent(**loaded)
|
||||
else:
|
||||
self.data = CacheContent()
|
||||
|
||||
def add(self, text: str):
|
||||
"""
|
||||
Add text to our list of texts, add embedding as row to our
|
||||
embeddings-matrix
|
||||
|
||||
Args:
|
||||
text: str
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
self.data.texts.append(text)
|
||||
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
vector = np.array(embedding).astype(np.float32)
|
||||
vector = vector[np.newaxis, :]
|
||||
self.data.embeddings = np.concatenate(
|
||||
[
|
||||
vector,
|
||||
self.data.embeddings,
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
|
||||
with open(self.filename, 'wb') as f:
|
||||
out = orjson.dumps(
|
||||
self.data,
|
||||
option=SAVE_OPTIONS
|
||||
)
|
||||
f.write(out)
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.data = CacheContent()
|
||||
return "Obliviated"
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def get_relevant(self, text: str, k: int) -> List[Any]:
|
||||
""""
|
||||
matrix-vector mult to find score-for-each-row-of-matrix
|
||||
get indices for top-k winning scores
|
||||
return texts for those indices
|
||||
Args:
|
||||
text: str
|
||||
k: int
|
||||
|
||||
Returns: List[str]
|
||||
"""
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
scores = np.dot(self.data.embeddings, embedding)
|
||||
|
||||
top_k_indices = np.argsort(scores)[-k:][::-1]
|
||||
|
||||
return [self.data.texts[i] for i in top_k_indices]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the local cache.
|
||||
"""
|
||||
return len(self.data.texts), self.data.embeddings.shape
|
|
@ -4,7 +4,6 @@ import redis
|
|||
from redis.commands.search.field import VectorField, TextField
|
||||
from redis.commands.search.query import Query
|
||||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
import traceback
|
||||
import numpy as np
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
|
Loading…
Reference in New Issue