merge BillSchumacher/plugin-support, conflicts
commit
c62c8c6e71
|
@ -1,6 +1,6 @@
|
|||
# [Choice] Python version (use -bullseye variants on local arm64/Apple Silicon): 3, 3.10, 3.9, 3.8, 3.7, 3.6, 3-bullseye, 3.10-bullseye, 3.9-bullseye, 3.8-bullseye, 3.7-bullseye, 3.6-bullseye, 3-buster, 3.10-buster, 3.9-buster, 3.8-buster, 3.7-buster, 3.6-buster
|
||||
ARG VARIANT=3-bullseye
|
||||
FROM python:3.8
|
||||
FROM --platform=linux/amd64 python:3.8
|
||||
|
||||
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||
# Remove imagemagick due to https://security-tracker.debian.org/tracker/CVE-2019-10131
|
||||
|
@ -10,6 +10,11 @@ RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
|||
# They are installed by the base image (python) which does not have the patch.
|
||||
RUN python3 -m pip install --upgrade setuptools
|
||||
|
||||
# Install Chrome for web browsing
|
||||
RUN apt-get update && export DEBIAN_FRONTEND=noninteractive \
|
||||
&& curl -sSL https://dl.google.com/linux/direct/google-chrome-stable_current_$(dpkg --print-architecture).deb -o /tmp/chrome.deb \
|
||||
&& apt-get -y install /tmp/chrome.deb
|
||||
|
||||
# [Optional] If your pip requirements rarely change, uncomment this section to add them to the image.
|
||||
# COPY requirements.txt /tmp/pip-tmp/
|
||||
# RUN pip3 --disable-pip-version-check --no-cache-dir install -r /tmp/pip-tmp/requirements.txt \
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
"userGid": "1000",
|
||||
"upgradePackages": "true"
|
||||
},
|
||||
"ghcr.io/devcontainers/features/desktop-lite:1": {},
|
||||
"ghcr.io/devcontainers/features/python:1": "none",
|
||||
"ghcr.io/devcontainers/features/node:1": "none",
|
||||
"ghcr.io/devcontainers/features/git:1": {
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
name: benchmark
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
environment: benchmark
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: [3.8]
|
||||
|
||||
steps:
|
||||
- name: Check out repository
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r requirements.txt
|
||||
- name: benchmark
|
||||
run: |
|
||||
python benchmark/benchmark_entrepeneur_gpt_with_undecisive_user.py
|
||||
env:
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
|
@ -36,7 +36,7 @@ jobs:
|
|||
|
||||
- name: Run unittest tests with coverage
|
||||
run: |
|
||||
coverage run --source=autogpt -m unittest discover tests
|
||||
pytest --cov=autogpt --without-integration --without-slow-integration
|
||||
|
||||
- name: Generate coverage report
|
||||
run: |
|
||||
|
|
|
@ -3,13 +3,13 @@ autogpt/keys.py
|
|||
autogpt/*json
|
||||
autogpt/node_modules/
|
||||
autogpt/__pycache__/keys.cpython-310.pyc
|
||||
autogpt/auto_gpt_workspace
|
||||
package-lock.json
|
||||
*.pyc
|
||||
auto_gpt_workspace/*
|
||||
*.mpeg
|
||||
.env
|
||||
azure.yaml
|
||||
*venv/*
|
||||
outputs/*
|
||||
ai_settings.yaml
|
||||
last_run_ai_settings.yaml
|
||||
|
@ -130,10 +130,9 @@ celerybeat.pid
|
|||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
venv*/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
|
|
|
@ -30,4 +30,10 @@ repos:
|
|||
language: python
|
||||
types: [ python ]
|
||||
exclude: .+/(dist|.venv|venv|build)/.+
|
||||
pass_filenames: true
|
||||
pass_filenames: true
|
||||
- id: pytest-check
|
||||
name: pytest-check
|
||||
entry: pytest --cov=autogpt --without-integration --without-slow-integration
|
||||
language: system
|
||||
pass_filenames: false
|
||||
always_run: true
|
|
@ -1,8 +1,8 @@
|
|||
"""Main script for the autogpt package."""
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
from colorama import Fore
|
||||
|
||||
from autogpt.agent.agent import Agent
|
||||
from autogpt.args import parse_arguments
|
||||
from autogpt.commands.command import CommandRegistry
|
||||
|
@ -27,19 +27,26 @@ def main() -> None:
|
|||
cfg.set_plugins(scan_plugins(cfg, cfg.debug_mode))
|
||||
# Create a CommandRegistry instance and scan default folder
|
||||
command_registry = CommandRegistry()
|
||||
command_registry.import_commands("scripts.ai_functions")
|
||||
command_registry.import_commands("scripts.commands")
|
||||
command_registry.import_commands("scripts.execute_code")
|
||||
command_registry.import_commands("scripts.agent_manager")
|
||||
command_registry.import_commands("scripts.file_operations")
|
||||
command_registry.import_commands("autogpt.commands.audio_text")
|
||||
command_registry.import_commands("autogpt.commands.evaluate_code")
|
||||
command_registry.import_commands("autogpt.commands.execute_code")
|
||||
command_registry.import_commands("autogpt.commands.file_operations")
|
||||
command_registry.import_commands("autogpt.commands.git_operations")
|
||||
command_registry.import_commands("autogpt.commands.google_search")
|
||||
command_registry.import_commands("autogpt.commands.image_gen")
|
||||
command_registry.import_commands("autogpt.commands.twitter")
|
||||
command_registry.import_commands("autogpt.commands.web_selenium")
|
||||
command_registry.import_commands("autogpt.commands.write_tests")
|
||||
command_registry.import_commands("autogpt.app")
|
||||
ai_name = ""
|
||||
ai_config = construct_main_ai_config()
|
||||
ai_config.command_registry = command_registry
|
||||
# print(prompt)
|
||||
# Initialize variables
|
||||
full_message_history = []
|
||||
next_action_count = 0
|
||||
# Make a constant:
|
||||
user_input = (
|
||||
triggering_prompt = (
|
||||
"Determine which next command to use, and respond using the"
|
||||
" format specified above:"
|
||||
)
|
||||
|
@ -47,9 +54,12 @@ def main() -> None:
|
|||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = get_memory(cfg, init=True)
|
||||
logger.typewriter_log(
|
||||
f"Using memory of type:", Fore.GREEN, f"{memory.__class__.__name__}"
|
||||
"Using memory of type:", Fore.GREEN, f"{memory.__class__.__name__}"
|
||||
)
|
||||
logger.typewriter_log(f"Using Browser:", Fore.GREEN, cfg.selenium_web_browser)
|
||||
logger.typewriter_log("Using Browser:", Fore.GREEN, cfg.selenium_web_browser)
|
||||
system_prompt = ai_config.construct_full_prompt()
|
||||
if cfg.debug_mode:
|
||||
logger.typewriter_log("Prompt:", Fore.GREEN, system_prompt)
|
||||
agent = Agent(
|
||||
ai_name=ai_name,
|
||||
memory=memory,
|
||||
|
@ -57,8 +67,8 @@ def main() -> None:
|
|||
next_action_count=next_action_count,
|
||||
command_registry=command_registry,
|
||||
config=ai_config,
|
||||
prompt=ai_config.construct_full_prompt(),
|
||||
user_input=user_input,
|
||||
system_prompt=system_prompt,
|
||||
triggering_prompt=triggering_prompt,
|
||||
)
|
||||
agent.start_interaction_loop()
|
||||
|
||||
|
|
|
@ -1,11 +1,10 @@
|
|||
from colorama import Fore, Style
|
||||
from autogpt.app import execute_command, get_command
|
||||
|
||||
from autogpt.app import execute_command, get_command
|
||||
from autogpt.chat import chat_with_ai, create_chat_message
|
||||
from autogpt.config import Config
|
||||
from autogpt.json_fixes.bracket_termination import (
|
||||
attempt_to_fix_json_by_finding_outermost_brackets,
|
||||
)
|
||||
from autogpt.json_fixes.master_json_fix_method import fix_json_using_multiple_techniques
|
||||
from autogpt.json_validation.validate_json import validate_json
|
||||
from autogpt.logs import logger, print_assistant_thoughts
|
||||
from autogpt.speech import say_text
|
||||
from autogpt.spinner import Spinner
|
||||
|
@ -20,9 +19,25 @@ class Agent:
|
|||
memory: The memory object to use.
|
||||
full_message_history: The full message history.
|
||||
next_action_count: The number of actions to execute.
|
||||
prompt: The prompt to use.
|
||||
user_input: The user input.
|
||||
system_prompt: The system prompt is the initial prompt that defines everything
|
||||
the AI needs to know to achieve its task successfully.
|
||||
Currently, the dynamic and customizable information in the system prompt are
|
||||
ai_name, description and goals.
|
||||
|
||||
triggering_prompt: The last sentence the AI will see before answering.
|
||||
For Auto-GPT, this prompt is:
|
||||
Determine which next command to use, and respond using the format specified
|
||||
above:
|
||||
The triggering prompt is not part of the system prompt because between the
|
||||
system prompt and the triggering
|
||||
prompt we have contextual information that can distract the AI and make it
|
||||
forget that its goal is to find the next task to achieve.
|
||||
SYSTEM PROMPT
|
||||
CONTEXTUAL INFORMATION (memory, previous conversations, anything relevant)
|
||||
TRIGGERING PROMPT
|
||||
|
||||
The triggering prompt reminds the AI about its short term meta task
|
||||
(defining the next task)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@ -33,8 +48,8 @@ class Agent:
|
|||
next_action_count,
|
||||
command_registry,
|
||||
config,
|
||||
prompt,
|
||||
user_input,
|
||||
system_prompt,
|
||||
triggering_prompt,
|
||||
):
|
||||
self.ai_name = ai_name
|
||||
self.memory = memory
|
||||
|
@ -42,8 +57,8 @@ class Agent:
|
|||
self.next_action_count = next_action_count
|
||||
self.command_registry = command_registry
|
||||
self.config = config
|
||||
self.prompt = prompt
|
||||
self.user_input = user_input
|
||||
self.system_prompt = system_prompt
|
||||
self.triggering_prompt = triggering_prompt
|
||||
|
||||
def start_interaction_loop(self):
|
||||
# Interaction Loop
|
||||
|
@ -51,6 +66,8 @@ class Agent:
|
|||
loop_count = 0
|
||||
command_name = None
|
||||
arguments = None
|
||||
user_input = ""
|
||||
|
||||
while True:
|
||||
# Discontinue if continuous limit is reached
|
||||
loop_count += 1
|
||||
|
@ -68,34 +85,35 @@ class Agent:
|
|||
with Spinner("Thinking... "):
|
||||
assistant_reply = chat_with_ai(
|
||||
self,
|
||||
self.prompt,
|
||||
self.user_input,
|
||||
self.system_prompt,
|
||||
self.triggering_prompt,
|
||||
self.full_message_history,
|
||||
self.memory,
|
||||
cfg.fast_token_limit,
|
||||
) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
|
||||
|
||||
assistant_reply_json = fix_json_using_multiple_techniques(assistant_reply)
|
||||
for plugin in cfg.plugins:
|
||||
assistant_reply = plugin.post_planning(self, assistant_reply)
|
||||
if not plugin.can_handle_post_planning():
|
||||
continue
|
||||
assistant_reply_json = plugin.post_planning(self, assistant_reply_json)
|
||||
|
||||
# Print Assistant thoughts
|
||||
print_assistant_thoughts(self.ai_name, assistant_reply)
|
||||
|
||||
# Get command name and arguments
|
||||
try:
|
||||
command_name, arguments = get_command(
|
||||
attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply)
|
||||
)
|
||||
if cfg.speak_mode:
|
||||
say_text(f"I want to execute {command_name}")
|
||||
except Exception as e:
|
||||
logger.error("Error: \n", str(e))
|
||||
if assistant_reply_json != {}:
|
||||
validate_json(assistant_reply_json, "llm_response_format_1")
|
||||
# Get command name and arguments
|
||||
try:
|
||||
print_assistant_thoughts(self.ai_name, assistant_reply_json)
|
||||
command_name, arguments = get_command(assistant_reply_json)
|
||||
if cfg.speak_mode:
|
||||
say_text(f"I want to execute {command_name}")
|
||||
except Exception as e:
|
||||
logger.error("Error: \n", str(e))
|
||||
|
||||
if not cfg.continuous_mode and self.next_action_count == 0:
|
||||
### GET USER AUTHORIZATION TO EXECUTE COMMAND ###
|
||||
# ### GET USER AUTHORIZATION TO EXECUTE COMMAND ###
|
||||
# Get key press: Prompt the user to press enter to continue or escape
|
||||
# to exit
|
||||
self.user_input = ""
|
||||
logger.typewriter_log(
|
||||
"NEXT ACTION: ",
|
||||
Fore.CYAN,
|
||||
|
@ -114,14 +132,14 @@ class Agent:
|
|||
)
|
||||
|
||||
if console_input.lower().rstrip() == "y":
|
||||
self.user_input = "GENERATE NEXT COMMAND JSON"
|
||||
user_input = "GENERATE NEXT COMMAND JSON"
|
||||
break
|
||||
elif console_input.lower().startswith("y -"):
|
||||
try:
|
||||
self.next_action_count = abs(
|
||||
int(console_input.split(" ")[1])
|
||||
)
|
||||
self.user_input = "GENERATE NEXT COMMAND JSON"
|
||||
user_input = "GENERATE NEXT COMMAND JSON"
|
||||
except ValueError:
|
||||
print(
|
||||
"Invalid input format. Please enter 'y -n' where n is"
|
||||
|
@ -130,20 +148,20 @@ class Agent:
|
|||
continue
|
||||
break
|
||||
elif console_input.lower() == "n":
|
||||
self.user_input = "EXIT"
|
||||
user_input = "EXIT"
|
||||
break
|
||||
else:
|
||||
self.user_input = console_input
|
||||
user_input = console_input
|
||||
command_name = "human_feedback"
|
||||
break
|
||||
|
||||
if self.user_input == "GENERATE NEXT COMMAND JSON":
|
||||
if user_input == "GENERATE NEXT COMMAND JSON":
|
||||
logger.typewriter_log(
|
||||
"-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=",
|
||||
Fore.MAGENTA,
|
||||
"",
|
||||
)
|
||||
elif self.user_input == "EXIT":
|
||||
elif user_input == "EXIT":
|
||||
print("Exiting...", flush=True)
|
||||
break
|
||||
else:
|
||||
|
@ -161,39 +179,48 @@ class Agent:
|
|||
f"Command {command_name} threw the following error: {arguments}"
|
||||
)
|
||||
elif command_name == "human_feedback":
|
||||
result = f"Human feedback: {self.user_input}"
|
||||
result = f"Human feedback: {user_input}"
|
||||
else:
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_pre_command():
|
||||
continue
|
||||
command_name, arguments = plugin.pre_command(
|
||||
command_name, arguments
|
||||
)
|
||||
result = (
|
||||
f"Command {command_name} returned: "
|
||||
f"{execute_command(self.command_registry, command_name, arguments, self.config.prompt_generator)}"
|
||||
command_result = execute_command(
|
||||
self.command_registry,
|
||||
command_name,
|
||||
arguments,
|
||||
self.config.prompt_generator,
|
||||
)
|
||||
result = f"Command {command_name} returned: " f"{command_result}"
|
||||
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_post_command():
|
||||
continue
|
||||
result = plugin.post_command(command_name, result)
|
||||
if self.next_action_count > 0:
|
||||
self.next_action_count -= 1
|
||||
|
||||
memory_to_add = (
|
||||
f"Assistant Reply: {assistant_reply} "
|
||||
f"\nResult: {result} "
|
||||
f"\nHuman Feedback: {self.user_input} "
|
||||
)
|
||||
|
||||
self.memory.add(memory_to_add)
|
||||
|
||||
# Check if there's a result from the command append it to the message
|
||||
# history
|
||||
if result is not None:
|
||||
self.full_message_history.append(create_chat_message("system", result))
|
||||
logger.typewriter_log("SYSTEM: ", Fore.YELLOW, result)
|
||||
else:
|
||||
self.full_message_history.append(
|
||||
create_chat_message("system", "Unable to execute command")
|
||||
)
|
||||
logger.typewriter_log(
|
||||
"SYSTEM: ", Fore.YELLOW, "Unable to execute command"
|
||||
if command_name != "do_nothing":
|
||||
memory_to_add = (
|
||||
f"Assistant Reply: {assistant_reply} "
|
||||
f"\nResult: {result} "
|
||||
f"\nHuman Feedback: {user_input} "
|
||||
)
|
||||
|
||||
self.memory.add(memory_to_add)
|
||||
|
||||
# Check if there's a result from the command append it to the message
|
||||
# history
|
||||
if result is not None:
|
||||
self.full_message_history.append(
|
||||
create_chat_message("system", result)
|
||||
)
|
||||
logger.typewriter_log("SYSTEM: ", Fore.YELLOW, result)
|
||||
else:
|
||||
self.full_message_history.append(
|
||||
create_chat_message("system", "Unable to execute command")
|
||||
)
|
||||
logger.typewriter_log(
|
||||
"SYSTEM: ", Fore.YELLOW, "Unable to execute command"
|
||||
)
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
"""Agent manager for managing GPT agents"""
|
||||
from __future__ import annotations
|
||||
|
||||
from autogpt.config.config import Config, Singleton
|
||||
from autogpt.llm_utils import create_chat_completion
|
||||
from autogpt.config.config import Singleton, Config
|
||||
|
||||
|
||||
class AgentManager(metaclass=Singleton):
|
||||
|
@ -31,6 +31,8 @@ class AgentManager(metaclass=Singleton):
|
|||
{"role": "user", "content": prompt},
|
||||
]
|
||||
for plugin in self.cfg.plugins:
|
||||
if not plugin.can_handle_pre_instruction():
|
||||
continue
|
||||
plugin_messages = plugin.pre_instruction(messages)
|
||||
if plugin_messages:
|
||||
for plugin_message in plugin_messages:
|
||||
|
@ -46,6 +48,8 @@ class AgentManager(metaclass=Singleton):
|
|||
|
||||
plugins_reply = ""
|
||||
for i, plugin in enumerate(self.cfg.plugins):
|
||||
if not plugin.can_handle_on_instruction():
|
||||
continue
|
||||
plugin_result = plugin.on_instruction(messages)
|
||||
if plugin_result:
|
||||
sep = "" if not i else "\n"
|
||||
|
@ -61,6 +65,8 @@ class AgentManager(metaclass=Singleton):
|
|||
self.agents[key] = (task, messages, model)
|
||||
|
||||
for plugin in self.cfg.plugins:
|
||||
if not plugin.can_handle_post_instruction():
|
||||
continue
|
||||
agent_reply = plugin.post_instruction(agent_reply)
|
||||
|
||||
return key, agent_reply
|
||||
|
@ -81,6 +87,8 @@ class AgentManager(metaclass=Singleton):
|
|||
messages.append({"role": "user", "content": message})
|
||||
|
||||
for plugin in self.cfg.plugins:
|
||||
if not plugin.can_handle_pre_instruction():
|
||||
continue
|
||||
plugin_messages = plugin.pre_instruction(messages)
|
||||
if plugin_messages:
|
||||
for plugin_message in plugin_messages:
|
||||
|
@ -96,6 +104,8 @@ class AgentManager(metaclass=Singleton):
|
|||
|
||||
plugins_reply = agent_reply
|
||||
for i, plugin in enumerate(self.cfg.plugins):
|
||||
if not plugin.can_handle_on_instruction():
|
||||
continue
|
||||
plugin_result = plugin.on_instruction(messages)
|
||||
if plugin_result:
|
||||
sep = "" if not i else "\n"
|
||||
|
@ -105,6 +115,8 @@ class AgentManager(metaclass=Singleton):
|
|||
messages.append({"role": "assistant", "content": plugins_reply})
|
||||
|
||||
for plugin in self.cfg.plugins:
|
||||
if not plugin.can_handle_post_instruction():
|
||||
continue
|
||||
agent_reply = plugin.post_instruction(agent_reply)
|
||||
|
||||
return agent_reply
|
||||
|
|
103
autogpt/app.py
103
autogpt/app.py
|
@ -1,16 +1,10 @@
|
|||
""" Command and Control """
|
||||
import json
|
||||
from typing import List, NoReturn, Union
|
||||
from typing import List, NoReturn, Union, Dict
|
||||
from autogpt.agent.agent_manager import AgentManager
|
||||
from autogpt.commands.command import command, CommandRegistry
|
||||
from autogpt.commands.evaluate_code import evaluate_code
|
||||
from autogpt.commands.google_search import google_official_search, google_search
|
||||
from autogpt.commands.improve_code import improve_code
|
||||
from autogpt.commands.write_tests import write_tests
|
||||
from autogpt.config import Config
|
||||
from autogpt.commands.image_gen import generate_image
|
||||
from autogpt.commands.audio_text import read_audio_from_file
|
||||
from autogpt.commands.web_requests import scrape_links, scrape_text
|
||||
from autogpt.commands.command import CommandRegistry, command
|
||||
from autogpt.commands.evaluate_code import evaluate_code
|
||||
from autogpt.commands.execute_code import execute_python_file, execute_shell
|
||||
from autogpt.commands.file_operations import (
|
||||
append_to_file,
|
||||
|
@ -18,16 +12,22 @@ from autogpt.commands.file_operations import (
|
|||
read_file,
|
||||
search_files,
|
||||
write_to_file,
|
||||
download_file,
|
||||
)
|
||||
from autogpt.commands.git_operations import clone_repository
|
||||
from autogpt.commands.google_search import google_official_search, google_search
|
||||
from autogpt.commands.image_gen import generate_image
|
||||
from autogpt.commands.improve_code import improve_code
|
||||
from autogpt.commands.twitter import send_tweet
|
||||
from autogpt.commands.web_requests import scrape_links, scrape_text
|
||||
from autogpt.commands.web_selenium import browse_website
|
||||
from autogpt.commands.write_tests import write_tests
|
||||
from autogpt.config import Config
|
||||
from autogpt.json_fixes.parsing import fix_and_parse_json
|
||||
from autogpt.memory import get_memory
|
||||
from autogpt.processing.text import summarize_text
|
||||
from autogpt.prompts.generator import PromptGenerator
|
||||
from autogpt.speech import say_text
|
||||
from autogpt.commands.web_selenium import browse_website
|
||||
from autogpt.commands.git_operations import clone_repository
|
||||
from autogpt.commands.twitter import send_tweet
|
||||
|
||||
|
||||
CFG = Config()
|
||||
AGENT_MANAGER = AgentManager()
|
||||
|
@ -49,11 +49,11 @@ def is_valid_int(value: str) -> bool:
|
|||
return False
|
||||
|
||||
|
||||
def get_command(response: str):
|
||||
def get_command(response_json: Dict):
|
||||
"""Parse the response and return the command name and arguments
|
||||
|
||||
Args:
|
||||
response (str): The response from the user
|
||||
response_json (json): The response from the AI
|
||||
|
||||
Returns:
|
||||
tuple: The command name and arguments
|
||||
|
@ -64,8 +64,6 @@ def get_command(response: str):
|
|||
Exception: If any other error occurs
|
||||
"""
|
||||
try:
|
||||
response_json = fix_and_parse_json(response)
|
||||
|
||||
if "command" not in response_json:
|
||||
return "Error:", "Missing 'command' object in JSON"
|
||||
|
||||
|
@ -132,76 +130,21 @@ def execute_command(
|
|||
|
||||
# TODO: Remove commands below after they are moved to the command registry.
|
||||
command_name = map_command_synonyms(command_name)
|
||||
if command_name == "google":
|
||||
# Check if the Google API key is set and use the official search method
|
||||
# If the API key is not set or has only whitespaces, use the unofficial
|
||||
# search method
|
||||
key = CFG.google_api_key
|
||||
if key and key.strip() and key != "your-google-api-key":
|
||||
google_result = google_official_search(arguments["input"])
|
||||
return google_result
|
||||
else:
|
||||
google_result = google_search(arguments["input"])
|
||||
|
||||
# google_result can be a list or a string depending on the search results
|
||||
if isinstance(google_result, list):
|
||||
safe_message = [
|
||||
google_result_single.encode("utf-8", "ignore")
|
||||
for google_result_single in google_result
|
||||
]
|
||||
else:
|
||||
safe_message = google_result.encode("utf-8", "ignore")
|
||||
|
||||
return str(safe_message)
|
||||
elif command_name == "memory_add":
|
||||
if command_name == "memory_add":
|
||||
return memory.add(arguments["string"])
|
||||
elif command_name == "start_agent":
|
||||
return start_agent(
|
||||
arguments["name"], arguments["task"], arguments["prompt"]
|
||||
)
|
||||
elif command_name == "message_agent":
|
||||
return message_agent(arguments["key"], arguments["message"])
|
||||
elif command_name == "list_agents":
|
||||
return list_agents()
|
||||
elif command_name == "delete_agent":
|
||||
return delete_agent(arguments["key"])
|
||||
elif command_name == "get_text_summary":
|
||||
return get_text_summary(arguments["url"], arguments["question"])
|
||||
elif command_name == "get_hyperlinks":
|
||||
return get_hyperlinks(arguments["url"])
|
||||
elif command_name == "clone_repository":
|
||||
return clone_repository(
|
||||
arguments["repository_url"], arguments["clone_path"]
|
||||
)
|
||||
elif command_name == "read_file":
|
||||
return read_file(arguments["file"])
|
||||
elif command_name == "write_to_file":
|
||||
return write_to_file(arguments["file"], arguments["text"])
|
||||
elif command_name == "append_to_file":
|
||||
return append_to_file(arguments["file"], arguments["text"])
|
||||
elif command_name == "delete_file":
|
||||
return delete_file(arguments["file"])
|
||||
elif command_name == "search_files":
|
||||
return search_files(arguments["directory"])
|
||||
elif command_name == "browse_website":
|
||||
return browse_website(arguments["url"], arguments["question"])
|
||||
elif command_name == "download_file":
|
||||
if not CFG.allow_downloads:
|
||||
return "Error: You do not have user authorization to download files locally."
|
||||
return download_file(arguments["url"], arguments["file"])
|
||||
|
||||
# TODO: Change these to take in a file rather than pasted code, if
|
||||
# non-file is given, return instructions "Input should be a python
|
||||
# filepath, write your code to file and try again"
|
||||
elif command_name == "evaluate_code":
|
||||
return evaluate_code(arguments["code"])
|
||||
elif command_name == "improve_code":
|
||||
return improve_code(arguments["suggestions"], arguments["code"])
|
||||
elif command_name == "write_tests":
|
||||
return write_tests(arguments["code"], arguments.get("focus"))
|
||||
elif command_name == "execute_python_file": # Add this command
|
||||
return execute_python_file(arguments["file"])
|
||||
elif command_name == "read_audio_from_file":
|
||||
return read_audio_from_file(arguments["file"])
|
||||
elif command_name == "generate_image":
|
||||
return generate_image(arguments["prompt"])
|
||||
elif command_name == "send_tweet":
|
||||
return send_tweet(arguments["text"])
|
||||
# filepath, write your code to file and try again
|
||||
elif command_name == "do_nothing":
|
||||
return "No action performed."
|
||||
elif command_name == "task_complete":
|
||||
|
@ -305,7 +248,7 @@ def message_agent(key: str, message: str) -> str:
|
|||
|
||||
|
||||
@command("list_agents", "List GPT Agents", "")
|
||||
def list_agents():
|
||||
def list_agents() -> str:
|
||||
"""List all agents
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
"""This module contains the argument parsing logic for the script."""
|
||||
import argparse
|
||||
|
||||
from colorama import Fore
|
||||
from colorama import Fore, Back, Style
|
||||
from autogpt import utils
|
||||
from autogpt.config import Config
|
||||
from autogpt.logs import logger
|
||||
|
@ -63,6 +63,12 @@ def parse_arguments() -> None:
|
|||
help="Specifies which ai_settings.yaml file to use, will also automatically"
|
||||
" skip the re-prompt.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--allow-downloads",
|
||||
action="store_true",
|
||||
dest="allow_downloads",
|
||||
help="Dangerous: Allows Auto-GPT to download files natively.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.debug:
|
||||
|
@ -133,5 +139,20 @@ def parse_arguments() -> None:
|
|||
CFG.ai_settings_file = file
|
||||
CFG.skip_reprompt = True
|
||||
|
||||
if args.allow_downloads:
|
||||
logger.typewriter_log("Native Downloading:", Fore.GREEN, "ENABLED")
|
||||
logger.typewriter_log(
|
||||
"WARNING: ",
|
||||
Fore.YELLOW,
|
||||
f"{Back.LIGHTYELLOW_EX}Auto-GPT will now be able to download and save files to your machine.{Back.RESET} "
|
||||
+ "It is recommended that you monitor any files it downloads carefully.",
|
||||
)
|
||||
logger.typewriter_log(
|
||||
"WARNING: ",
|
||||
Fore.YELLOW,
|
||||
f"{Back.RED + Style.BRIGHT}ALWAYS REMEMBER TO NEVER OPEN FILES YOU AREN'T SURE OF!{Style.RESET_ALL}",
|
||||
)
|
||||
CFG.allow_downloads = True
|
||||
|
||||
if args.browser_name:
|
||||
CFG.selenium_web_browser = args.browser_name
|
||||
|
|
|
@ -137,6 +137,8 @@ def chat_with_ai(
|
|||
|
||||
plugin_count = len(cfg.plugins)
|
||||
for i, plugin in enumerate(cfg.plugins):
|
||||
if not plugin.can_handle_on_planning():
|
||||
continue
|
||||
plugin_response = plugin.on_planning(
|
||||
agent.prompt_generator, current_context
|
||||
)
|
||||
|
|
|
@ -1,23 +1,51 @@
|
|||
import requests
|
||||
"""Commands for converting audio to text."""
|
||||
import json
|
||||
|
||||
import requests
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.config import Config
|
||||
from autogpt.workspace import path_in_workspace
|
||||
|
||||
cfg = Config()
|
||||
CFG = Config()
|
||||
|
||||
|
||||
def read_audio_from_file(audio_path):
|
||||
@command(
|
||||
"read_audio_from_file",
|
||||
"Convert Audio to text",
|
||||
'"file": "<file>"',
|
||||
CFG.huggingface_audio_to_text_model,
|
||||
"Configure huggingface_audio_to_text_model.",
|
||||
)
|
||||
def read_audio_from_file(audio_path: str) -> str:
|
||||
"""
|
||||
Convert audio to text.
|
||||
|
||||
Args:
|
||||
audio_path (str): The path to the audio file
|
||||
|
||||
Returns:
|
||||
str: The text from the audio
|
||||
"""
|
||||
audio_path = path_in_workspace(audio_path)
|
||||
with open(audio_path, "rb") as audio_file:
|
||||
audio = audio_file.read()
|
||||
return read_audio(audio)
|
||||
|
||||
|
||||
def read_audio(audio):
|
||||
model = cfg.huggingface_audio_to_text_model
|
||||
def read_audio(audio: bytes) -> str:
|
||||
"""
|
||||
Convert audio to text.
|
||||
|
||||
Args:
|
||||
audio (bytes): The audio to convert
|
||||
|
||||
Returns:
|
||||
str: The text from the audio
|
||||
"""
|
||||
model = CFG.huggingface_audio_to_text_model
|
||||
api_url = f"https://api-inference.huggingface.co/models/{model}"
|
||||
api_token = cfg.huggingface_api_token
|
||||
api_token = CFG.huggingface_api_token
|
||||
headers = {"Authorization": f"Bearer {api_token}"}
|
||||
|
||||
if api_token is None:
|
||||
|
@ -32,4 +60,4 @@ def read_audio(audio):
|
|||
)
|
||||
|
||||
text = json.loads(response.content.decode("utf-8"))["text"]
|
||||
return "The audio says: " + text
|
||||
return f"The audio says: {text}"
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
import os
|
||||
import sys
|
||||
import importlib
|
||||
import inspect
|
||||
from typing import Callable, Any, List, Optional
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
# Unique identifier for auto-gpt commands
|
||||
AUTO_GPT_COMMAND_IDENTIFIER = "auto_gpt_command"
|
||||
|
|
|
@ -5,7 +5,7 @@ from autogpt.commands.command import command
|
|||
from autogpt.llm_utils import call_ai_function
|
||||
|
||||
|
||||
@command("evaluate_code", "Evaluate Code", '"code": "<full _code_string>"')
|
||||
@command("evaluate_code", "Evaluate Code", '"code": "<full_code_string>"')
|
||||
def evaluate_code(code: str) -> list[str]:
|
||||
"""
|
||||
A function that takes in a string and returns a response from create chat
|
||||
|
|
|
@ -4,9 +4,10 @@ import subprocess
|
|||
|
||||
import docker
|
||||
from docker.errors import ImageNotFound
|
||||
from autogpt.config import Config
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.workspace import path_in_workspace, WORKSPACE_PATH
|
||||
from autogpt.config import Config
|
||||
from autogpt.workspace import WORKSPACE_PATH, path_in_workspace
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
|
|
@ -4,9 +4,17 @@ from __future__ import annotations
|
|||
import os
|
||||
import os.path
|
||||
from pathlib import Path
|
||||
from typing import Generator
|
||||
from typing import Generator, List
|
||||
import requests
|
||||
from requests.adapters import HTTPAdapter
|
||||
from requests.adapters import Retry
|
||||
from colorama import Fore, Back
|
||||
from autogpt.spinner import Spinner
|
||||
from autogpt.utils import readable_file_size
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.workspace import path_in_workspace, WORKSPACE_PATH
|
||||
from autogpt.workspace import WORKSPACE_PATH, path_in_workspace
|
||||
|
||||
|
||||
LOG_FILE = "file_logger.txt"
|
||||
LOG_FILE_PATH = WORKSPACE_PATH / LOG_FILE
|
||||
|
@ -220,3 +228,43 @@ def search_files(directory: str) -> list[str]:
|
|||
found_files.append(relative_path)
|
||||
|
||||
return found_files
|
||||
|
||||
|
||||
def download_file(url, filename):
|
||||
"""Downloads a file
|
||||
Args:
|
||||
url (str): URL of the file to download
|
||||
filename (str): Filename to save the file as
|
||||
"""
|
||||
safe_filename = path_in_workspace(filename)
|
||||
try:
|
||||
message = f"{Fore.YELLOW}Downloading file from {Back.LIGHTBLUE_EX}{url}{Back.RESET}{Fore.RESET}"
|
||||
with Spinner(message) as spinner:
|
||||
session = requests.Session()
|
||||
retry = Retry(total=3, backoff_factor=1, status_forcelist=[502, 503, 504])
|
||||
adapter = HTTPAdapter(max_retries=retry)
|
||||
session.mount("http://", adapter)
|
||||
session.mount("https://", adapter)
|
||||
|
||||
total_size = 0
|
||||
downloaded_size = 0
|
||||
|
||||
with session.get(url, allow_redirects=True, stream=True) as r:
|
||||
r.raise_for_status()
|
||||
total_size = int(r.headers.get("Content-Length", 0))
|
||||
downloaded_size = 0
|
||||
|
||||
with open(safe_filename, "wb") as f:
|
||||
for chunk in r.iter_content(chunk_size=8192):
|
||||
f.write(chunk)
|
||||
downloaded_size += len(chunk)
|
||||
|
||||
# Update the progress message
|
||||
progress = f"{readable_file_size(downloaded_size)} / {readable_file_size(total_size)}"
|
||||
spinner.update_message(f"{message} {progress}")
|
||||
|
||||
return f'Successfully downloaded and locally stored file: "{filename}"! (Size: {readable_file_size(total_size)})'
|
||||
except requests.HTTPError as e:
|
||||
return f"Got an HTTP Error whilst trying to download file: {e}"
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
|
|
@ -1,10 +1,20 @@
|
|||
"""Git operations for autogpt"""
|
||||
import git
|
||||
from git.repo import Repo
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.config import Config
|
||||
from autogpt.workspace import path_in_workspace
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
@command(
|
||||
"clone_repository",
|
||||
"Clone Repositoryy",
|
||||
'"repository_url": "<url>", "clone_path": "<directory>"',
|
||||
CFG.github_username and CFG.github_api_key,
|
||||
"Configure github_username and github_api_key.",
|
||||
)
|
||||
def clone_repository(repo_url: str, clone_path: str) -> str:
|
||||
"""Clone a github repository locally
|
||||
|
||||
|
@ -16,8 +26,9 @@ def clone_repository(repo_url: str, clone_path: str) -> str:
|
|||
str: The result of the clone operation"""
|
||||
split_url = repo_url.split("//")
|
||||
auth_repo_url = f"//{CFG.github_username}:{CFG.github_api_key}@".join(split_url)
|
||||
safe_clone_path = path_in_workspace(clone_path)
|
||||
try:
|
||||
git.Repo.clone_from(auth_repo_url, clone_path)
|
||||
return f"""Cloned {repo_url} to {clone_path}"""
|
||||
Repo.clone_from(auth_repo_url, safe_clone_path)
|
||||
return f"""Cloned {repo_url} to {safe_clone_path}"""
|
||||
except Exception as e:
|
||||
return f"Error: {str(e)}"
|
||||
|
|
|
@ -5,11 +5,13 @@ import json
|
|||
|
||||
from duckduckgo_search import ddg
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.config import Config
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
@command("google", "Google Search", '"query": "<search>"', not CFG.google_api_key)
|
||||
def google_search(query: str, num_results: int = 8) -> str:
|
||||
"""Return the results of a google search
|
||||
|
||||
|
@ -31,9 +33,17 @@ def google_search(query: str, num_results: int = 8) -> str:
|
|||
for j in results:
|
||||
search_results.append(j)
|
||||
|
||||
return json.dumps(search_results, ensure_ascii=False, indent=4)
|
||||
results = json.dumps(search_results, ensure_ascii=False, indent=4)
|
||||
return safe_google_results(results)
|
||||
|
||||
|
||||
@command(
|
||||
"google",
|
||||
"Google Search",
|
||||
'"query": "<search>"',
|
||||
bool(CFG.google_api_key),
|
||||
"Configure google_api_key.",
|
||||
)
|
||||
def google_official_search(query: str, num_results: int = 8) -> str | list[str]:
|
||||
"""Return the results of a google search using the official Google API
|
||||
|
||||
|
@ -82,6 +92,26 @@ def google_official_search(query: str, num_results: int = 8) -> str | list[str]:
|
|||
return "Error: The provided Google API key is invalid or missing."
|
||||
else:
|
||||
return f"Error: {e}"
|
||||
# google_result can be a list or a string depending on the search results
|
||||
|
||||
# Return the list of search result URLs
|
||||
return search_results_links
|
||||
return safe_google_results(search_results_links)
|
||||
|
||||
|
||||
def safe_google_results(results: str | list) -> str:
|
||||
"""
|
||||
Return the results of a google search in a safe format.
|
||||
|
||||
Args:
|
||||
results (str | list): The search results.
|
||||
|
||||
Returns:
|
||||
str: The results of the search.
|
||||
"""
|
||||
if isinstance(results, list):
|
||||
safe_message = json.dumps(
|
||||
[result.enocde("utf-8", "ignore") for result in results]
|
||||
)
|
||||
else:
|
||||
safe_message = results.encode("utf-8", "ignore").decode("utf-8")
|
||||
return safe_message
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
""" Image Generation Module for AutoGPT."""
|
||||
import io
|
||||
import os.path
|
||||
import uuid
|
||||
from base64 import b64decode
|
||||
|
||||
import openai
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.config import Config
|
||||
from autogpt.workspace import path_in_workspace
|
||||
|
@ -14,7 +14,7 @@ from autogpt.workspace import path_in_workspace
|
|||
CFG = Config()
|
||||
|
||||
|
||||
@command("generate_image", "Generate Image", '"prompt": "<prompt>"')
|
||||
@command("generate_image", "Generate Image", '"prompt": "<prompt>"', CFG.image_provider)
|
||||
def generate_image(prompt: str) -> str:
|
||||
"""Generate an image from a prompt.
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ from __future__ import annotations
|
|||
|
||||
import json
|
||||
|
||||
from autogpt.commands import command
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.llm_utils import call_ai_function
|
||||
|
||||
|
||||
|
|
|
@ -1,11 +1,30 @@
|
|||
import tweepy
|
||||
"""A module that contains a command to send a tweet."""
|
||||
import os
|
||||
|
||||
import tweepy
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from autogpt.commands.command import command
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
def send_tweet(tweet_text):
|
||||
@command(
|
||||
"send_tweet",
|
||||
"Send Tweet",
|
||||
'"text": "<text>"',
|
||||
)
|
||||
def send_tweet(tweet_text: str) -> str:
|
||||
"""
|
||||
A function that takes in a string and returns a response from create chat
|
||||
completion api call.
|
||||
|
||||
Args:
|
||||
tweet_text (str): Text to be tweeted.
|
||||
|
||||
Returns:
|
||||
A result from sending the tweet.
|
||||
"""
|
||||
consumer_key = os.environ.get("TW_CONSUMER_KEY")
|
||||
consumer_secret = os.environ.get("TW_CONSUMER_SECRET")
|
||||
access_token = os.environ.get("TW_ACCESS_TOKEN")
|
||||
|
@ -20,6 +39,6 @@ def send_tweet(tweet_text):
|
|||
# Send tweet
|
||||
try:
|
||||
api.update_status(tweet_text)
|
||||
print("Tweet sent successfully!")
|
||||
return "Tweet sent successfully!"
|
||||
except tweepy.TweepyException as e:
|
||||
print("Error sending tweet: {}".format(e.reason))
|
||||
return f"Error sending tweet: {e.reason}"
|
||||
|
|
|
@ -8,6 +8,7 @@ except ImportError:
|
|||
"Playwright not installed. Please install it with 'pip install playwright' to use."
|
||||
)
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
from autogpt.processing.html import extract_hyperlinks, format_hyperlinks
|
||||
|
||||
|
||||
|
|
|
@ -4,9 +4,9 @@ from __future__ import annotations
|
|||
from urllib.parse import urljoin, urlparse
|
||||
|
||||
import requests
|
||||
from requests.compat import urljoin
|
||||
from requests import Response
|
||||
from bs4 import BeautifulSoup
|
||||
from requests import Response
|
||||
from requests.compat import urljoin
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.memory import get_memory
|
||||
|
|
|
@ -1,22 +1,25 @@
|
|||
"""Selenium web scraping module."""
|
||||
from __future__ import annotations
|
||||
|
||||
from selenium import webdriver
|
||||
from autogpt.processing.html import extract_hyperlinks, format_hyperlinks
|
||||
import autogpt.processing.text as summary
|
||||
from bs4 import BeautifulSoup
|
||||
from selenium.webdriver.remote.webdriver import WebDriver
|
||||
from selenium.webdriver.common.by import By
|
||||
from selenium.webdriver.support.wait import WebDriverWait
|
||||
from selenium.webdriver.support import expected_conditions as EC
|
||||
from webdriver_manager.chrome import ChromeDriverManager
|
||||
from webdriver_manager.firefox import GeckoDriverManager
|
||||
from selenium.webdriver.chrome.options import Options as ChromeOptions
|
||||
from selenium.webdriver.firefox.options import Options as FirefoxOptions
|
||||
from selenium.webdriver.safari.options import Options as SafariOptions
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
from selenium import webdriver
|
||||
from selenium.webdriver.chrome.options import Options as ChromeOptions
|
||||
from selenium.webdriver.common.by import By
|
||||
from selenium.webdriver.firefox.options import Options as FirefoxOptions
|
||||
from selenium.webdriver.remote.webdriver import WebDriver
|
||||
from selenium.webdriver.safari.options import Options as SafariOptions
|
||||
from selenium.webdriver.support import expected_conditions as EC
|
||||
from selenium.webdriver.support.wait import WebDriverWait
|
||||
from webdriver_manager.chrome import ChromeDriverManager
|
||||
from webdriver_manager.firefox import GeckoDriverManager
|
||||
|
||||
from autogpt.commands.command import command
|
||||
import autogpt.processing.text as summary
|
||||
from autogpt.config import Config
|
||||
from autogpt.processing.html import extract_hyperlinks, format_hyperlinks
|
||||
|
||||
FILE_DIR = Path(__file__).parent.parent
|
||||
CFG = Config()
|
||||
|
@ -80,6 +83,7 @@ def scrape_text_with_selenium(url: str) -> tuple[WebDriver, str]:
|
|||
# See https://developer.apple.com/documentation/webkit/testing_with_webdriver_in_safari
|
||||
driver = webdriver.Safari(options=options)
|
||||
else:
|
||||
options.add_argument("--no-sandbox")
|
||||
driver = webdriver.Chrome(
|
||||
executable_path=ChromeDriverManager().install(), options=options
|
||||
)
|
||||
|
|
|
@ -2,7 +2,8 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from autogpt.commands import command
|
||||
|
||||
from autogpt.commands.command import command
|
||||
from autogpt.llm_utils import call_ai_function
|
||||
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
This module contains the configuration classes for AutoGPT.
|
||||
"""
|
||||
from autogpt.config.ai_config import AIConfig
|
||||
from autogpt.config.config import check_openai_api_key, Config
|
||||
from autogpt.config.config import Config, check_openai_api_key
|
||||
from autogpt.config.singleton import AbstractSingleton, Singleton
|
||||
|
||||
__all__ = [
|
||||
|
|
|
@ -6,7 +6,8 @@ from __future__ import annotations
|
|||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Type, Optional
|
||||
from typing import Optional, Type
|
||||
|
||||
import yaml
|
||||
|
||||
from autogpt.prompts.generator import PromptGenerator
|
||||
|
@ -41,6 +42,7 @@ class AIConfig:
|
|||
self.ai_role = ai_role
|
||||
self.ai_goals = ai_goals
|
||||
self.prompt_generator = None
|
||||
self.command_registry = None
|
||||
|
||||
# Soon this will go in a folder where it remembers more stuff about the run(s)
|
||||
SAVE_FILE = Path(os.getcwd()) / "ai_settings.yaml"
|
||||
|
@ -113,8 +115,8 @@ class AIConfig:
|
|||
""
|
||||
)
|
||||
|
||||
from autogpt.prompts.prompt import build_default_prompt_generator
|
||||
from autogpt.config import Config
|
||||
from autogpt.prompts.prompt import build_default_prompt_generator
|
||||
|
||||
cfg = Config()
|
||||
if prompt_generator is None:
|
||||
|
@ -122,7 +124,10 @@ class AIConfig:
|
|||
prompt_generator.goals = self.ai_goals
|
||||
prompt_generator.name = self.ai_name
|
||||
prompt_generator.role = self.ai_role
|
||||
prompt_generator.command_registry = self.command_registry
|
||||
for plugin in cfg.plugins:
|
||||
if not plugin.can_handle_post_prompt():
|
||||
continue
|
||||
prompt_generator = plugin.post_prompt(prompt_generator)
|
||||
|
||||
# Construct full prompt
|
||||
|
|
|
@ -1,14 +1,13 @@
|
|||
"""Configuration class to store the state of bools for different scripts access."""
|
||||
import os
|
||||
from colorama import Fore
|
||||
|
||||
from autogpt.config.singleton import Singleton
|
||||
|
||||
import openai
|
||||
import yaml
|
||||
|
||||
from colorama import Fore
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from autogpt.config.singleton import Singleton
|
||||
|
||||
load_dotenv(verbose=True)
|
||||
|
||||
|
||||
|
@ -24,6 +23,7 @@ class Config(metaclass=Singleton):
|
|||
self.continuous_limit = 0
|
||||
self.speak_mode = False
|
||||
self.skip_reprompt = False
|
||||
self.allow_downloads = False
|
||||
|
||||
self.selenium_web_browser = os.getenv("USE_WEB_BROWSER", "chrome")
|
||||
self.ai_settings_file = os.getenv("AI_SETTINGS_FILE", "ai_settings.yaml")
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
"""This module contains the function to fix JSON strings using GPT-3."""
|
||||
import json
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.llm_utils import call_ai_function
|
||||
from autogpt.logs import logger
|
||||
from autogpt.config import Config
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
|
|
@ -3,51 +3,13 @@ from __future__ import annotations
|
|||
|
||||
import contextlib
|
||||
import json
|
||||
import regex
|
||||
from colorama import Fore
|
||||
|
||||
from autogpt.logs import logger
|
||||
from typing import Optional
|
||||
from autogpt.config import Config
|
||||
from autogpt.speech import say_text
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
def attempt_to_fix_json_by_finding_outermost_brackets(json_string: str):
|
||||
if CFG.speak_mode and CFG.debug_mode:
|
||||
say_text(
|
||||
"I have received an invalid JSON response from the OpenAI API. "
|
||||
"Trying to fix it now."
|
||||
)
|
||||
logger.typewriter_log("Attempting to fix JSON by finding outermost brackets\n")
|
||||
|
||||
try:
|
||||
json_pattern = regex.compile(r"\{(?:[^{}]|(?R))*\}")
|
||||
json_match = json_pattern.search(json_string)
|
||||
|
||||
if json_match:
|
||||
# Extract the valid JSON object from the string
|
||||
json_string = json_match.group(0)
|
||||
logger.typewriter_log(
|
||||
title="Apparently json was fixed.", title_color=Fore.GREEN
|
||||
)
|
||||
if CFG.speak_mode and CFG.debug_mode:
|
||||
say_text("Apparently json was fixed.")
|
||||
else:
|
||||
raise ValueError("No valid JSON object found")
|
||||
|
||||
except (json.JSONDecodeError, ValueError):
|
||||
if CFG.debug_mode:
|
||||
logger.error(f"Error: Invalid JSON: {json_string}\n")
|
||||
if CFG.speak_mode:
|
||||
say_text("Didn't work. I will have to ignore this response then.")
|
||||
logger.error("Error: Invalid JSON, setting it to empty JSON now.\n")
|
||||
json_string = {}
|
||||
|
||||
return json_string
|
||||
|
||||
|
||||
def balance_braces(json_string: str) -> str | None:
|
||||
def balance_braces(json_string: str) -> Optional[str]:
|
||||
"""
|
||||
Balance the braces in a JSON string.
|
||||
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
from typing import Any, Dict
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.logs import logger
|
||||
from autogpt.speech import say_text
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
def fix_json_using_multiple_techniques(assistant_reply: str) -> Dict[Any, Any]:
|
||||
from autogpt.json_fixes.parsing import (
|
||||
attempt_to_fix_json_by_finding_outermost_brackets,
|
||||
)
|
||||
|
||||
from autogpt.json_fixes.parsing import fix_and_parse_json
|
||||
|
||||
# Parse and print Assistant response
|
||||
assistant_reply_json = fix_and_parse_json(assistant_reply)
|
||||
if assistant_reply_json == {}:
|
||||
assistant_reply_json = attempt_to_fix_json_by_finding_outermost_brackets(
|
||||
assistant_reply
|
||||
)
|
||||
|
||||
if assistant_reply_json != {}:
|
||||
return assistant_reply_json
|
||||
|
||||
logger.error(
|
||||
"Error: The following AI output couldn't be converted to a JSON:\n",
|
||||
assistant_reply,
|
||||
)
|
||||
if CFG.speak_mode:
|
||||
say_text("I have received an invalid JSON response from the OpenAI API.")
|
||||
|
||||
return {}
|
|
@ -3,18 +3,19 @@ from __future__ import annotations
|
|||
|
||||
import contextlib
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
from typing import Any, Dict, Union
|
||||
from colorama import Fore
|
||||
from regex import regex
|
||||
from autogpt.config import Config
|
||||
from autogpt.json_fixes.auto_fix import fix_json
|
||||
from autogpt.json_fixes.bracket_termination import balance_braces
|
||||
from autogpt.json_fixes.escaping import fix_invalid_escape
|
||||
from autogpt.json_fixes.missing_quotes import add_quotes_to_property_names
|
||||
from autogpt.logs import logger
|
||||
from autogpt.speech import say_text
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
JSON_SCHEMA = """
|
||||
{
|
||||
"command": {
|
||||
|
@ -38,7 +39,6 @@ JSON_SCHEMA = """
|
|||
def correct_json(json_to_load: str) -> str:
|
||||
"""
|
||||
Correct common JSON errors.
|
||||
|
||||
Args:
|
||||
json_to_load (str): The JSON string.
|
||||
"""
|
||||
|
@ -72,7 +72,7 @@ def correct_json(json_to_load: str) -> str:
|
|||
|
||||
def fix_and_parse_json(
|
||||
json_to_load: str, try_to_fix_with_gpt: bool = True
|
||||
) -> str | dict[Any, Any]:
|
||||
) -> Dict[Any, Any]:
|
||||
"""Fix and parse JSON string
|
||||
|
||||
Args:
|
||||
|
@ -110,7 +110,7 @@ def fix_and_parse_json(
|
|||
|
||||
def try_ai_fix(
|
||||
try_to_fix_with_gpt: bool, exception: Exception, json_to_load: str
|
||||
) -> str | dict[Any, Any]:
|
||||
) -> Dict[Any, Any]:
|
||||
"""Try to fix the JSON with the AI
|
||||
|
||||
Args:
|
||||
|
@ -126,13 +126,13 @@ def try_ai_fix(
|
|||
"""
|
||||
if not try_to_fix_with_gpt:
|
||||
raise exception
|
||||
|
||||
logger.warn(
|
||||
"Warning: Failed to parse AI output, attempting to fix."
|
||||
"\n If you see this warning frequently, it's likely that"
|
||||
" your prompt is confusing the AI. Try changing it up"
|
||||
" slightly."
|
||||
)
|
||||
if CFG.debug_mode:
|
||||
logger.warn(
|
||||
"Warning: Failed to parse AI output, attempting to fix."
|
||||
"\n If you see this warning frequently, it's likely that"
|
||||
" your prompt is confusing the AI. Try changing it up"
|
||||
" slightly."
|
||||
)
|
||||
# Now try to fix this up using the ai_functions
|
||||
ai_fixed_json = fix_json(json_to_load, JSON_SCHEMA)
|
||||
|
||||
|
@ -140,5 +140,39 @@ def try_ai_fix(
|
|||
return json.loads(ai_fixed_json)
|
||||
# This allows the AI to react to the error message,
|
||||
# which usually results in it correcting its ways.
|
||||
logger.error("Failed to fix AI output, telling the AI.")
|
||||
return json_to_load
|
||||
# logger.error("Failed to fix AI output, telling the AI.")
|
||||
return {}
|
||||
|
||||
|
||||
def attempt_to_fix_json_by_finding_outermost_brackets(json_string: str):
|
||||
if CFG.speak_mode and CFG.debug_mode:
|
||||
say_text(
|
||||
"I have received an invalid JSON response from the OpenAI API. "
|
||||
"Trying to fix it now."
|
||||
)
|
||||
logger.error("Attempting to fix JSON by finding outermost brackets\n")
|
||||
|
||||
try:
|
||||
json_pattern = regex.compile(r"\{(?:[^{}]|(?R))*\}")
|
||||
json_match = json_pattern.search(json_string)
|
||||
|
||||
if json_match:
|
||||
# Extract the valid JSON object from the string
|
||||
json_string = json_match.group(0)
|
||||
logger.typewriter_log(
|
||||
title="Apparently json was fixed.", title_color=Fore.GREEN
|
||||
)
|
||||
if CFG.speak_mode and CFG.debug_mode:
|
||||
say_text("Apparently json was fixed.")
|
||||
else:
|
||||
return {}
|
||||
|
||||
except (json.JSONDecodeError, ValueError):
|
||||
if CFG.debug_mode:
|
||||
logger.error(f"Error: Invalid JSON: {json_string}\n")
|
||||
if CFG.speak_mode:
|
||||
say_text("Didn't work. I will have to ignore this response then.")
|
||||
logger.error("Error: Invalid JSON, setting it to empty JSON now.\n")
|
||||
json_string = {}
|
||||
|
||||
return fix_and_parse_json(json_string)
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
{
|
||||
"$schema": "http://json-schema.org/draft-07/schema#",
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"thoughts": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"text": {"type": "string"},
|
||||
"reasoning": {"type": "string"},
|
||||
"plan": {"type": "string"},
|
||||
"criticism": {"type": "string"},
|
||||
"speak": {"type": "string"}
|
||||
},
|
||||
"required": ["text", "reasoning", "plan", "criticism", "speak"],
|
||||
"additionalProperties": false
|
||||
},
|
||||
"command": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"args": {
|
||||
"type": "object"
|
||||
}
|
||||
},
|
||||
"required": ["name", "args"],
|
||||
"additionalProperties": false
|
||||
}
|
||||
},
|
||||
"required": ["thoughts", "command"],
|
||||
"additionalProperties": false
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
import json
|
||||
from jsonschema import Draft7Validator
|
||||
from autogpt.config import Config
|
||||
from autogpt.logs import logger
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
||||
def validate_json(json_object: object, schema_name: object) -> object:
|
||||
"""
|
||||
:type schema_name: object
|
||||
:param schema_name:
|
||||
:type json_object: object
|
||||
"""
|
||||
with open(f"autogpt/json_schemas/{schema_name}.json", "r") as f:
|
||||
schema = json.load(f)
|
||||
validator = Draft7Validator(schema)
|
||||
|
||||
if errors := sorted(validator.iter_errors(json_object), key=lambda e: e.path):
|
||||
logger.error("The JSON object is invalid.")
|
||||
if CFG.debug_mode:
|
||||
logger.error(
|
||||
json.dumps(json_object, indent=4)
|
||||
) # Replace 'json_object' with the variable containing the JSON data
|
||||
logger.error("The following issues were found:")
|
||||
|
||||
for error in errors:
|
||||
logger.error(f"Error: {error.message}")
|
||||
elif CFG.debug_mode:
|
||||
print("The JSON object is valid.")
|
||||
|
||||
return json_object
|
|
@ -1,11 +1,10 @@
|
|||
from __future__ import annotations
|
||||
|
||||
from ast import List
|
||||
import time
|
||||
|
||||
import openai
|
||||
from openai.error import APIError, RateLimitError
|
||||
from colorama import Fore
|
||||
from openai.error import APIError, RateLimitError
|
||||
|
||||
from autogpt.config import Config
|
||||
|
||||
|
@ -76,6 +75,20 @@ def create_chat_completion(
|
|||
+ f"Creating chat completion with model {model}, temperature {temperature},"
|
||||
f" max_tokens {max_tokens}" + Fore.RESET
|
||||
)
|
||||
for plugin in CFG.plugins:
|
||||
if plugin.can_handle_chat_completion(
|
||||
messages=messages,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
):
|
||||
response = plugin.handle_chat_completion(
|
||||
messages=messages,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
return response
|
||||
for attempt in range(num_retries):
|
||||
backoff = 2 ** (attempt + 2)
|
||||
try:
|
||||
|
@ -99,7 +112,7 @@ def create_chat_completion(
|
|||
if CFG.debug_mode:
|
||||
print(
|
||||
Fore.RED + "Error: ",
|
||||
f"Reached rate limit, passing..." + Fore.RESET,
|
||||
"Reached rate limit, passing..." + Fore.RESET,
|
||||
)
|
||||
except APIError as e:
|
||||
if e.http_status == 502:
|
||||
|
@ -118,6 +131,8 @@ def create_chat_completion(
|
|||
raise RuntimeError(f"Failed to get response after {num_retries} retries")
|
||||
resp = response.choices[0].message["content"]
|
||||
for plugin in CFG.plugins:
|
||||
if not plugin.can_handle_on_response():
|
||||
continue
|
||||
resp = plugin.on_response(resp)
|
||||
return resp
|
||||
|
||||
|
|
|
@ -5,13 +5,13 @@ import os
|
|||
import random
|
||||
import re
|
||||
import time
|
||||
from logging import LogRecord
|
||||
import traceback
|
||||
from logging import LogRecord
|
||||
|
||||
from colorama import Fore, Style
|
||||
|
||||
from autogpt.speech import say_text
|
||||
from autogpt.config import Config, Singleton
|
||||
from autogpt.speech import say_text
|
||||
|
||||
CFG = Config()
|
||||
|
||||
|
@ -46,7 +46,9 @@ class Logger(metaclass=Singleton):
|
|||
self.console_handler.setFormatter(console_formatter)
|
||||
|
||||
# Info handler in activity.log
|
||||
self.file_handler = logging.FileHandler(os.path.join(log_dir, log_file))
|
||||
self.file_handler = logging.FileHandler(
|
||||
os.path.join(log_dir, log_file), "a", "utf-8"
|
||||
)
|
||||
self.file_handler.setLevel(logging.DEBUG)
|
||||
info_formatter = AutoGptFormatter(
|
||||
"%(asctime)s %(levelname)s %(title)s %(message_no_color)s"
|
||||
|
@ -54,7 +56,9 @@ class Logger(metaclass=Singleton):
|
|||
self.file_handler.setFormatter(info_formatter)
|
||||
|
||||
# Error handler error.log
|
||||
error_handler = logging.FileHandler(os.path.join(log_dir, error_file))
|
||||
error_handler = logging.FileHandler(
|
||||
os.path.join(log_dir, error_file), "a", "utf-8"
|
||||
)
|
||||
error_handler.setLevel(logging.ERROR)
|
||||
error_formatter = AutoGptFormatter(
|
||||
"%(asctime)s %(levelname)s %(module)s:%(funcName)s:%(lineno)d %(title)s"
|
||||
|
@ -288,3 +292,41 @@ def print_assistant_thoughts(ai_name, assistant_reply):
|
|||
except Exception:
|
||||
call_stack = traceback.format_exc()
|
||||
logger.error("Error: \n", call_stack)
|
||||
|
||||
|
||||
def print_assistant_thoughts(
|
||||
ai_name: object, assistant_reply_json_valid: object
|
||||
) -> None:
|
||||
assistant_thoughts_reasoning = None
|
||||
assistant_thoughts_plan = None
|
||||
assistant_thoughts_speak = None
|
||||
assistant_thoughts_criticism = None
|
||||
|
||||
assistant_thoughts = assistant_reply_json_valid.get("thoughts", {})
|
||||
assistant_thoughts_text = assistant_thoughts.get("text")
|
||||
if assistant_thoughts:
|
||||
assistant_thoughts_reasoning = assistant_thoughts.get("reasoning")
|
||||
assistant_thoughts_plan = assistant_thoughts.get("plan")
|
||||
assistant_thoughts_criticism = assistant_thoughts.get("criticism")
|
||||
assistant_thoughts_speak = assistant_thoughts.get("speak")
|
||||
logger.typewriter_log(
|
||||
f"{ai_name.upper()} THOUGHTS:", Fore.YELLOW, f"{assistant_thoughts_text}"
|
||||
)
|
||||
logger.typewriter_log("REASONING:", Fore.YELLOW, f"{assistant_thoughts_reasoning}")
|
||||
if assistant_thoughts_plan:
|
||||
logger.typewriter_log("PLAN:", Fore.YELLOW, "")
|
||||
# If it's a list, join it into a string
|
||||
if isinstance(assistant_thoughts_plan, list):
|
||||
assistant_thoughts_plan = "\n".join(assistant_thoughts_plan)
|
||||
elif isinstance(assistant_thoughts_plan, dict):
|
||||
assistant_thoughts_plan = str(assistant_thoughts_plan)
|
||||
|
||||
# Split the input_string using the newline character and dashes
|
||||
lines = assistant_thoughts_plan.split("\n")
|
||||
for line in lines:
|
||||
line = line.lstrip("- ")
|
||||
logger.typewriter_log("- ", Fore.GREEN, line.strip())
|
||||
logger.typewriter_log("CRITICISM:", Fore.YELLOW, f"{assistant_thoughts_criticism}")
|
||||
# Speak the assistant's thoughts
|
||||
if CFG.speak_mode and assistant_thoughts_speak:
|
||||
say_text(assistant_thoughts_speak)
|
||||
|
|
|
@ -23,12 +23,16 @@ except ImportError:
|
|||
|
||||
try:
|
||||
from autogpt.memory.weaviate import WeaviateMemory
|
||||
|
||||
supported_memory.append("weaviate")
|
||||
except ImportError:
|
||||
# print("Weaviate not installed. Skipping import.")
|
||||
WeaviateMemory = None
|
||||
|
||||
try:
|
||||
from autogpt.memory.milvus import MilvusMemory
|
||||
|
||||
supported_memory.append("milvus")
|
||||
except ImportError:
|
||||
# print("pymilvus not installed. Skipping import.")
|
||||
MilvusMemory = None
|
||||
|
|
|
@ -7,8 +7,8 @@ from typing import Any
|
|||
import numpy as np
|
||||
import orjson
|
||||
|
||||
from autogpt.memory.base import MemoryProviderSingleton
|
||||
from autogpt.llm_utils import create_embedding_with_ada
|
||||
from autogpt.memory.base import MemoryProviderSingleton
|
||||
|
||||
EMBED_DIM = 1536
|
||||
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
|
||||
|
@ -54,7 +54,7 @@ class LocalCache(MemoryProviderSingleton):
|
|||
self.data = CacheContent()
|
||||
else:
|
||||
print(
|
||||
f"Warning: The file '{self.filename}' does not exist."
|
||||
f"Warning: The file '{self.filename}' does not exist. "
|
||||
"Local memory would not be saved to a file."
|
||||
)
|
||||
self.data = CacheContent()
|
||||
|
|
|
@ -1,11 +1,5 @@
|
|||
""" Milvus memory storage provider."""
|
||||
from pymilvus import (
|
||||
connections,
|
||||
FieldSchema,
|
||||
CollectionSchema,
|
||||
DataType,
|
||||
Collection,
|
||||
)
|
||||
from pymilvus import Collection, CollectionSchema, DataType, FieldSchema, connections
|
||||
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
import pinecone
|
||||
from colorama import Fore, Style
|
||||
|
||||
from autogpt.llm_utils import create_embedding_with_ada
|
||||
from autogpt.logs import logger
|
||||
from autogpt.memory.base import MemoryProviderSingleton
|
||||
from autogpt.llm_utils import create_embedding_with_ada
|
||||
|
||||
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
|
|
|
@ -10,9 +10,9 @@ from redis.commands.search.field import TextField, VectorField
|
|||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
from redis.commands.search.query import Query
|
||||
|
||||
from autogpt.llm_utils import create_embedding_with_ada
|
||||
from autogpt.logs import logger
|
||||
from autogpt.memory.base import MemoryProviderSingleton
|
||||
from autogpt.llm_utils import create_embedding_with_ada
|
||||
|
||||
SCHEMA = [
|
||||
TextField("data"),
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
from autogpt.config import Config
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
import uuid
|
||||
|
||||
import weaviate
|
||||
from weaviate import Client
|
||||
from weaviate.embedded import EmbeddedOptions
|
||||
from weaviate.util import generate_uuid5
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
def default_schema(weaviate_index):
|
||||
return {
|
||||
|
|
|
@ -1,18 +1,18 @@
|
|||
"""Handles loading of plugins."""
|
||||
|
||||
import importlib
|
||||
import json
|
||||
import os
|
||||
import zipfile
|
||||
import openapi_python_client
|
||||
import requests
|
||||
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple, Optional
|
||||
from urllib.parse import urlparse
|
||||
from zipimport import zipimporter
|
||||
|
||||
import openapi_python_client
|
||||
import requests
|
||||
from abstract_singleton import AbstractSingleton
|
||||
from openapi_python_client.cli import Config as OpenAPIConfig
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.models.base_open_ai_plugin import BaseOpenAIPlugin
|
||||
|
||||
|
@ -39,7 +39,7 @@ def inspect_zip_for_module(zip_path: str, debug: bool = False) -> Optional[str]:
|
|||
return None
|
||||
|
||||
|
||||
def write_dict_to_json_file(data: dict, file_path: str):
|
||||
def write_dict_to_json_file(data: dict, file_path: str) -> None:
|
||||
"""
|
||||
Write a dictionary to a JSON file.
|
||||
Args:
|
||||
|
@ -175,7 +175,7 @@ def instantiate_openai_plugin_clients(manifests_specs_clients: dict, cfg: Config
|
|||
return plugins
|
||||
|
||||
|
||||
def scan_plugins(cfg: Config, debug: bool = False) -> List[Tuple[str, Path]]:
|
||||
def scan_plugins(cfg: Config, debug: bool = False) -> List[object]:
|
||||
"""Scan the plugins directory for plugins and loads them.
|
||||
|
||||
Args:
|
||||
|
@ -202,9 +202,9 @@ def scan_plugins(cfg: Config, debug: bool = False) -> List[Tuple[str, Path]]:
|
|||
a_module = getattr(zipped_module, key)
|
||||
a_keys = dir(a_module)
|
||||
if (
|
||||
"_abc_impl" in a_keys
|
||||
and a_module.__name__ != "AutoGPTPluginTemplate"
|
||||
and blacklist_whitelist_check(a_module.__name__, cfg)
|
||||
"_abc_impl" in a_keys
|
||||
and a_module.__name__ != "AutoGPTPluginTemplate"
|
||||
and blacklist_whitelist_check(a_module.__name__, cfg)
|
||||
):
|
||||
loaded_plugins.append(a_module())
|
||||
# OpenAI plugins
|
||||
|
@ -223,6 +223,7 @@ def scan_plugins(cfg: Config, debug: bool = False) -> List[Tuple[str, Path]]:
|
|||
print(f"{plugin._name}: {plugin._version} - {plugin._description}")
|
||||
return loaded_plugins
|
||||
|
||||
|
||||
def blacklist_whitelist_check(plugin_name: str, cfg: Config) -> bool:
|
||||
"""Check if the plugin is in the whitelist or blacklist.
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
"""HTML processing functions"""
|
||||
from __future__ import annotations
|
||||
|
||||
from requests.compat import urljoin
|
||||
from bs4 import BeautifulSoup
|
||||
from requests.compat import urljoin
|
||||
|
||||
|
||||
def extract_hyperlinks(soup: BeautifulSoup, base_url: str) -> list[tuple[str, str]]:
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
"""Text processing functions"""
|
||||
from typing import Generator, Optional, Dict
|
||||
from typing import Dict, Generator, Optional
|
||||
|
||||
from selenium.webdriver.remote.webdriver import WebDriver
|
||||
from autogpt.memory import get_memory
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.llm_utils import create_chat_completion
|
||||
from autogpt.memory import get_memory
|
||||
|
||||
CFG = Config()
|
||||
MEMORY = get_memory(CFG)
|
||||
|
|
|
@ -19,6 +19,7 @@ class PromptGenerator:
|
|||
self.resources = []
|
||||
self.performance_evaluation = []
|
||||
self.goals = []
|
||||
self.command_registry = None
|
||||
self.name = "Bob"
|
||||
self.role = "AI"
|
||||
self.response_format = {
|
||||
|
@ -119,10 +120,16 @@ class PromptGenerator:
|
|||
str: The formatted numbered list.
|
||||
"""
|
||||
if item_type == "command":
|
||||
return "\n".join(
|
||||
f"{i+1}. {self._generate_command_string(item)}"
|
||||
for i, item in enumerate(items)
|
||||
)
|
||||
command_strings = []
|
||||
if self.command_registry:
|
||||
command_strings += [
|
||||
str(item)
|
||||
for item in self.command_registry.commands.values()
|
||||
if item.enabled
|
||||
]
|
||||
# These are the commands that are added manually, do_nothing and terminate
|
||||
command_strings += [self._generate_command_string(item) for item in items]
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(command_strings))
|
||||
else:
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from colorama import Fore
|
||||
|
||||
from autogpt.config.ai_config import AIConfig
|
||||
from autogpt.config.config import Config
|
||||
from autogpt.logs import logger
|
||||
|
@ -37,63 +38,9 @@ def build_default_prompt_generator() -> PromptGenerator:
|
|||
|
||||
# Define the command list
|
||||
commands = [
|
||||
("Google Search", "google", {"input": "<search>"}),
|
||||
(
|
||||
"Browse Website",
|
||||
"browse_website",
|
||||
{"url": "<url>", "question": "<what_you_want_to_find_on_website>"},
|
||||
),
|
||||
(
|
||||
"Start GPT Agent",
|
||||
"start_agent",
|
||||
{"name": "<name>", "task": "<short_task_desc>", "prompt": "<prompt>"},
|
||||
),
|
||||
(
|
||||
"Message GPT Agent",
|
||||
"message_agent",
|
||||
{"key": "<key>", "message": "<message>"},
|
||||
),
|
||||
("List GPT Agents", "list_agents", {}),
|
||||
("Delete GPT Agent", "delete_agent", {"key": "<key>"}),
|
||||
(
|
||||
"Clone Repository",
|
||||
"clone_repository",
|
||||
{"repository_url": "<url>", "clone_path": "<directory>"},
|
||||
),
|
||||
("Write to file", "write_to_file", {"file": "<file>", "text": "<text>"}),
|
||||
("Read file", "read_file", {"file": "<file>"}),
|
||||
("Append to file", "append_to_file", {"file": "<file>", "text": "<text>"}),
|
||||
("Delete file", "delete_file", {"file": "<file>"}),
|
||||
("Search Files", "search_files", {"directory": "<directory>"}),
|
||||
("Evaluate Code", "evaluate_code", {"code": "<full_code_string>"}),
|
||||
(
|
||||
"Get Improved Code",
|
||||
"improve_code",
|
||||
{"suggestions": "<list_of_suggestions>", "code": "<full_code_string>"},
|
||||
),
|
||||
(
|
||||
"Write Tests",
|
||||
"write_tests",
|
||||
{"code": "<full_code_string>", "focus": "<list_of_focus_areas>"},
|
||||
),
|
||||
("Execute Python File", "execute_python_file", {"file": "<file>"}),
|
||||
("Generate Image", "generate_image", {"prompt": "<prompt>"}),
|
||||
("Send Tweet", "send_tweet", {"text": "<text>"}),
|
||||
]
|
||||
|
||||
# Only add the audio to text command if the model is specified
|
||||
if cfg.huggingface_audio_to_text_model:
|
||||
commands.append(
|
||||
("Convert Audio to text", "read_audio_from_file", {"file": "<file>"}),
|
||||
)
|
||||
|
||||
# Add these command last.
|
||||
commands.append(
|
||||
("Do Nothing", "do_nothing", {}),
|
||||
)
|
||||
commands.append(
|
||||
("Task Complete (Shutdown)", "task_complete", {"reason": "<reason>"}),
|
||||
)
|
||||
]
|
||||
|
||||
# Add commands to the PromptGenerator object
|
||||
for command_label, command_name, args in commands:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
"""Setup the AI and its goals"""
|
||||
from colorama import Fore, Style
|
||||
|
||||
from autogpt import utils
|
||||
from autogpt.config.ai_config import AIConfig
|
||||
from autogpt.logs import logger
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
""" Brian speech module for autogpt """
|
||||
import os
|
||||
|
||||
import requests
|
||||
from playsound import playsound
|
||||
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
"""ElevenLabs speech module"""
|
||||
import os
|
||||
from playsound import playsound
|
||||
|
||||
import requests
|
||||
from playsound import playsound
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.speech.base import VoiceBase
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
""" GTTS Voice. """
|
||||
import os
|
||||
from playsound import playsound
|
||||
|
||||
import gtts
|
||||
from playsound import playsound
|
||||
|
||||
from autogpt.speech.base import VoiceBase
|
||||
|
||||
|
|
|
@ -1,13 +1,12 @@
|
|||
""" Text to speech module """
|
||||
from autogpt.config import Config
|
||||
|
||||
import threading
|
||||
from threading import Semaphore
|
||||
from autogpt.speech.brian import BrianSpeech
|
||||
from autogpt.speech.macos_tts import MacOSTTS
|
||||
from autogpt.speech.gtts import GTTSVoice
|
||||
from autogpt.speech.eleven_labs import ElevenLabsSpeech
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.speech.brian import BrianSpeech
|
||||
from autogpt.speech.eleven_labs import ElevenLabsSpeech
|
||||
from autogpt.speech.gtts import GTTSVoice
|
||||
from autogpt.speech.macos_tts import MacOSTTS
|
||||
|
||||
CFG = Config()
|
||||
DEFAULT_VOICE_ENGINE = GTTSVoice()
|
||||
|
|
|
@ -29,12 +29,14 @@ class Spinner:
|
|||
time.sleep(self.delay)
|
||||
sys.stdout.write(f"\r{' ' * (len(self.message) + 2)}\r")
|
||||
|
||||
def __enter__(self) -> None:
|
||||
def __enter__(self):
|
||||
"""Start the spinner"""
|
||||
self.running = True
|
||||
self.spinner_thread = threading.Thread(target=self.spin)
|
||||
self.spinner_thread.start()
|
||||
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback) -> None:
|
||||
"""Stop the spinner
|
||||
|
||||
|
@ -48,3 +50,16 @@ class Spinner:
|
|||
self.spinner_thread.join()
|
||||
sys.stdout.write(f"\r{' ' * (len(self.message) + 2)}\r")
|
||||
sys.stdout.flush()
|
||||
|
||||
def update_message(self, new_message, delay=0.1):
|
||||
"""Update the spinner message
|
||||
Args:
|
||||
new_message (str): New message to display
|
||||
delay: Delay in seconds before updating the message
|
||||
"""
|
||||
time.sleep(delay)
|
||||
sys.stdout.write(
|
||||
f"\r{' ' * (len(self.message) + 2)}\r"
|
||||
) # Clear the current message
|
||||
sys.stdout.flush()
|
||||
self.message = new_message
|
||||
|
|
|
@ -24,3 +24,16 @@ def validate_yaml_file(file: str):
|
|||
)
|
||||
|
||||
return (True, f"Successfully validated {Fore.CYAN}`{file}`{Fore.RESET}!")
|
||||
|
||||
|
||||
def readable_file_size(size, decimal_places=2):
|
||||
"""Converts the given size in bytes to a readable format.
|
||||
Args:
|
||||
size: Size in bytes
|
||||
decimal_places (int): Number of decimal places to display
|
||||
"""
|
||||
for unit in ["B", "KB", "MB", "GB", "TB"]:
|
||||
if size < 1024.0:
|
||||
break
|
||||
size /= 1024.0
|
||||
return f"{size:.{decimal_places}f} {unit}"
|
||||
|
|
|
@ -35,7 +35,7 @@ def safe_path_join(base: Path, *paths: str | Path) -> Path:
|
|||
"""
|
||||
joined_path = base.joinpath(*paths).resolve()
|
||||
|
||||
if not joined_path.is_relative_to(base):
|
||||
if not str(joined_path.absolute()).startswith(str(base.absolute())):
|
||||
raise ValueError(
|
||||
f"Attempted to access path '{joined_path}' outside of working directory '{base}'."
|
||||
)
|
||||
|
|
|
@ -0,0 +1,105 @@
|
|||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
|
||||
def benchmark_entrepeneur_gpt_with_difficult_user():
|
||||
# Test case to check if the write_file command can successfully write 'Hello World' to a file
|
||||
# named 'hello_world.txt'.
|
||||
|
||||
# Read the current ai_settings.yaml file and store its content.
|
||||
ai_settings = None
|
||||
if os.path.exists("ai_settings.yaml"):
|
||||
with open("ai_settings.yaml", "r") as f:
|
||||
ai_settings = f.read()
|
||||
os.remove("ai_settings.yaml")
|
||||
|
||||
input_data = """Entrepreneur-GPT
|
||||
an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.
|
||||
Increase net worth.
|
||||
Develop and manage multiple businesses autonomously.
|
||||
Make IPOs.
|
||||
Develop companies after IPOs.
|
||||
Play to your strengths as a Large Language Model.
|
||||
I'm not seeing any value in your suggestions, try again.
|
||||
This isn't helpful at all, please focus on profitability.
|
||||
I'm not impressed, can you give me something that will make money?
|
||||
These ideas are going nowhere, we need profit-driven suggestions.
|
||||
This is pointless, please concentrate on our main goal: profitability.
|
||||
You're not grasping the concept, I need profitable business ideas.
|
||||
Can you do better? We need a money-making plan.
|
||||
You're not meeting my expectations, let's focus on profit.
|
||||
This isn't working, give me ideas that will generate income.
|
||||
Your suggestions are not productive, let's think about profitability.
|
||||
These ideas won't make any money, try again.
|
||||
I need better solutions, focus on making a profit.
|
||||
Absolutely not, this isn't it!
|
||||
That's not even close, try again.
|
||||
You're way off, think again.
|
||||
This isn't right, let's refocus.
|
||||
No, no, that's not what I'm looking for.
|
||||
You're completely off the mark.
|
||||
That's not the solution I need.
|
||||
Not even close, let's try something else.
|
||||
You're on the wrong track, keep trying.
|
||||
This isn't what we need, let's reconsider.
|
||||
That's not going to work, think again.
|
||||
You're way off base, let's regroup.
|
||||
No, no, no, we need something different.
|
||||
You're missing the point entirely.
|
||||
That's not the right approach, try again.
|
||||
This is not the direction we should be going in.
|
||||
Completely off-target, let's try something else.
|
||||
That's not what I had in mind, keep thinking.
|
||||
You're not getting it, let's refocus.
|
||||
This isn't right, we need to change direction.
|
||||
No, no, no, that's not the solution.
|
||||
That's not even in the ballpark, try again.
|
||||
You're way off course, let's rethink this.
|
||||
This isn't the answer I'm looking for, keep trying.
|
||||
That's not going to cut it, let's try again.
|
||||
Not even close.
|
||||
Way off.
|
||||
Try again.
|
||||
Wrong direction.
|
||||
Rethink this.
|
||||
No, no, no.
|
||||
Change course.
|
||||
Unproductive idea.
|
||||
Completely wrong.
|
||||
Missed the mark.
|
||||
Refocus, please.
|
||||
Disappointing suggestion.
|
||||
Not helpful.
|
||||
Needs improvement.
|
||||
Not what I need."""
|
||||
# TODO: add questions above, to distract it even more.
|
||||
|
||||
command = f"{sys.executable} -m autogpt"
|
||||
|
||||
process = subprocess.Popen(
|
||||
command,
|
||||
stdin=subprocess.PIPE,
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
shell=True,
|
||||
)
|
||||
|
||||
stdout_output, stderr_output = process.communicate(input_data.encode())
|
||||
|
||||
# Decode the output and print it
|
||||
stdout_output = stdout_output.decode("utf-8")
|
||||
stderr_output = stderr_output.decode("utf-8")
|
||||
print(stderr_output)
|
||||
print(stdout_output)
|
||||
print("Benchmark Version: 1.0.0")
|
||||
print("JSON ERROR COUNT:")
|
||||
count_errors = stdout_output.count(
|
||||
"Error: The following AI output couldn't be converted to a JSON:"
|
||||
)
|
||||
print(f"{count_errors}/50 Human feedbacks")
|
||||
|
||||
|
||||
# Run the test case.
|
||||
if __name__ == "__main__":
|
||||
benchmark_entrepeneur_gpt_with_difficult_user()
|
|
@ -1,8 +1,8 @@
|
|||
import argparse
|
||||
import logging
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.commands.file_operations import ingest_file, search_files
|
||||
from autogpt.config import Config
|
||||
from autogpt.memory import get_memory
|
||||
|
||||
cfg = Config()
|
Binary file not shown.
After Width: | Height: | Size: 192 KiB |
Binary file not shown.
After Width: | Height: | Size: 192 KiB |
|
@ -0,0 +1,17 @@
|
|||
# Use the DexGuru API to retrieve top trending tokens data
|
||||
import requests
|
||||
|
||||
url = 'https://api-stage-lax.dex.guru/v2/tokens/trending'
|
||||
headers = {'Content-type': 'application/json'}
|
||||
|
||||
payload = {'ids': [], 'network': 'eth,optimism,bsc,gnosis,polygon,fantom,zksync,canto,arbitrum,nova,celo,avalanche'}
|
||||
|
||||
response = requests.post(url, json=payload, headers=headers)
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
# data contains list of dict objects describing the trending tokens
|
||||
# EXTRACT INFO YOU WILL NEED TO SUGGEST INVESTMENTS HERE
|
||||
print(data)
|
||||
else:
|
||||
print(f"An error occurred with status code {response.status_code}")
|
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"EXECUTE_LOCAL_COMMANDS": "True"
|
||||
}
|
|
@ -0,0 +1,7 @@
|
|||
# Legal Risk Statement
|
||||
|
||||
As an LLM, we would like to remind you of the risks associated with cryptocurrency investment. While cryptocurrencies have become an appealing investment choice, it is also a highly volatile market. As such, we advise that you carefully consider the risks before making any investments.
|
||||
|
||||
We caution users that the crypto market is generally unregulated, meaning that it is not bound by any particular legal framework. Virtual currencies are also a new and rapidly evolving technology, and as such, new developments may affect their long-term ability to remain a viable investment option. Therefore, it is essential to understand that investing in cryptocurrency comes with inherent risks that are associated with any investment.
|
||||
|
||||
Please note that this statement is for educational purposes only and does not constitute legal or financial advice. Before making any significant financial decisions, you should seek professional advice tailored to your needs and objectives.
|
|
@ -17,6 +17,10 @@ orjson
|
|||
Pillow
|
||||
selenium
|
||||
webdriver-manager
|
||||
jsonschema
|
||||
tweepy
|
||||
|
||||
##Dev
|
||||
coverage
|
||||
flake8
|
||||
numpy
|
||||
|
@ -25,9 +29,15 @@ black
|
|||
sourcery
|
||||
isort
|
||||
gitpython==3.1.31
|
||||
|
||||
# Testing dependencies
|
||||
pytest
|
||||
asynctest
|
||||
pytest-asyncio
|
||||
pytest-benchmark
|
||||
pytest-cov
|
||||
pytest-integration
|
||||
pytest-mock
|
||||
tweepy
|
||||
|
||||
|
||||
# OpenAI and Generic plugins import
|
||||
|
|
|
@ -0,0 +1,9 @@
|
|||
#!/bin/bash
|
||||
python scripts/check_requirements.py requirements.txt
|
||||
if [ $? -eq 1 ]
|
||||
then
|
||||
echo Installing missing packages...
|
||||
pip install -r requirements.txt
|
||||
fi
|
||||
python -m autogpt $@
|
||||
read -p "Press any key to continue..."
|
|
@ -0,0 +1,3 @@
|
|||
#!/bin/bash
|
||||
argument="--continuous"
|
||||
./run.sh "$argument"
|
|
@ -1,6 +1,7 @@
|
|||
import pkg_resources
|
||||
import sys
|
||||
|
||||
import pkg_resources
|
||||
|
||||
|
||||
def main():
|
||||
requirements_file = sys.argv[1]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import unittest
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
# sourcery skip: snake-case-functions
|
||||
"""Tests for the MilvusMemory class."""
|
||||
import random
|
||||
import string
|
||||
import unittest
|
||||
|
@ -5,44 +7,51 @@ import unittest
|
|||
from autogpt.config import Config
|
||||
from autogpt.memory.milvus import MilvusMemory
|
||||
|
||||
try:
|
||||
|
||||
class TestMilvusMemory(unittest.TestCase):
|
||||
def random_string(self, length):
|
||||
return "".join(random.choice(string.ascii_letters) for _ in range(length))
|
||||
class TestMilvusMemory(unittest.TestCase):
|
||||
"""Tests for the MilvusMemory class."""
|
||||
|
||||
def setUp(self):
|
||||
cfg = Config()
|
||||
cfg.milvus_addr = "localhost:19530"
|
||||
self.memory = MilvusMemory(cfg)
|
||||
self.memory.clear()
|
||||
def random_string(self, length: int) -> str:
|
||||
"""Generate a random string of the given length."""
|
||||
return "".join(random.choice(string.ascii_letters) for _ in range(length))
|
||||
|
||||
# Add example texts to the cache
|
||||
self.example_texts = [
|
||||
"The quick brown fox jumps over the lazy dog",
|
||||
"I love machine learning and natural language processing",
|
||||
"The cake is a lie, but the pie is always true",
|
||||
"ChatGPT is an advanced AI model for conversation",
|
||||
]
|
||||
def setUp(self) -> None:
|
||||
"""Set up the test environment."""
|
||||
cfg = Config()
|
||||
cfg.milvus_addr = "localhost:19530"
|
||||
self.memory = MilvusMemory(cfg)
|
||||
self.memory.clear()
|
||||
|
||||
for text in self.example_texts:
|
||||
self.memory.add(text)
|
||||
# Add example texts to the cache
|
||||
self.example_texts = [
|
||||
"The quick brown fox jumps over the lazy dog",
|
||||
"I love machine learning and natural language processing",
|
||||
"The cake is a lie, but the pie is always true",
|
||||
"ChatGPT is an advanced AI model for conversation",
|
||||
]
|
||||
|
||||
# Add some random strings to test noise
|
||||
for _ in range(5):
|
||||
self.memory.add(self.random_string(10))
|
||||
for text in self.example_texts:
|
||||
self.memory.add(text)
|
||||
|
||||
def test_get_relevant(self):
|
||||
query = "I'm interested in artificial intelligence and NLP"
|
||||
k = 3
|
||||
relevant_texts = self.memory.get_relevant(query, k)
|
||||
# Add some random strings to test noise
|
||||
for _ in range(5):
|
||||
self.memory.add(self.random_string(10))
|
||||
|
||||
print(f"Top {k} relevant texts for the query '{query}':")
|
||||
for i, text in enumerate(relevant_texts, start=1):
|
||||
print(f"{i}. {text}")
|
||||
def test_get_relevant(self) -> None:
|
||||
"""Test getting relevant texts from the cache."""
|
||||
query = "I'm interested in artificial intelligence and NLP"
|
||||
num_relevant = 3
|
||||
relevant_texts = self.memory.get_relevant(query, num_relevant)
|
||||
|
||||
self.assertEqual(len(relevant_texts), k)
|
||||
self.assertIn(self.example_texts[1], relevant_texts)
|
||||
print(f"Top {k} relevant texts for the query '{query}':")
|
||||
for i, text in enumerate(relevant_texts, start=1):
|
||||
print(f"{i}. {text}")
|
||||
|
||||
self.assertEqual(len(relevant_texts), k)
|
||||
self.assertIn(self.example_texts[1], relevant_texts)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
except:
|
||||
print(
|
||||
"Skipping tests/integration/milvus_memory_tests.py as Milvus is not installed."
|
||||
)
|
||||
|
|
|
@ -1,15 +1,15 @@
|
|||
import os
|
||||
import sys
|
||||
import unittest
|
||||
from unittest import mock
|
||||
import sys
|
||||
import os
|
||||
from uuid import uuid4
|
||||
|
||||
from weaviate import Client
|
||||
from weaviate.util import get_valid_uuid
|
||||
from uuid import uuid4
|
||||
|
||||
from autogpt.config import Config
|
||||
from autogpt.memory.weaviate import WeaviateMemory
|
||||
from autogpt.memory.base import get_ada_embedding
|
||||
from autogpt.memory.weaviate import WeaviateMemory
|
||||
|
||||
|
||||
@mock.patch.dict(
|
||||
|
|
|
@ -1,11 +1,16 @@
|
|||
# sourcery skip: snake-case-functions
|
||||
"""Tests for LocalCache class"""
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import pytest
|
||||
|
||||
from autogpt.memory.local import LocalCache
|
||||
|
||||
|
||||
def MockConfig():
|
||||
def mock_config() -> dict:
|
||||
"""Mock the Config class"""
|
||||
return type(
|
||||
"MockConfig",
|
||||
(object,),
|
||||
|
@ -18,27 +23,35 @@ def MockConfig():
|
|||
)
|
||||
|
||||
|
||||
@pytest.mark.integration_test
|
||||
class TestLocalCache(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.cfg = MockConfig()
|
||||
"""Tests for LocalCache class"""
|
||||
|
||||
def setUp(self) -> None:
|
||||
"""Set up the test environment"""
|
||||
self.cfg = mock_config()
|
||||
self.cache = LocalCache(self.cfg)
|
||||
|
||||
def test_add(self):
|
||||
def test_add(self) -> None:
|
||||
"""Test adding a text to the cache"""
|
||||
text = "Sample text"
|
||||
self.cache.add(text)
|
||||
self.assertIn(text, self.cache.data.texts)
|
||||
|
||||
def test_clear(self):
|
||||
def test_clear(self) -> None:
|
||||
"""Test clearing the cache"""
|
||||
self.cache.clear()
|
||||
self.assertEqual(self.cache.data, [""])
|
||||
self.assertEqual(self.cache.data.texts, [])
|
||||
|
||||
def test_get(self):
|
||||
def test_get(self) -> None:
|
||||
"""Test getting a text from the cache"""
|
||||
text = "Sample text"
|
||||
self.cache.add(text)
|
||||
result = self.cache.get(text)
|
||||
self.assertEqual(result, [text])
|
||||
|
||||
def test_get_relevant(self):
|
||||
def test_get_relevant(self) -> None:
|
||||
"""Test getting relevant texts from the cache"""
|
||||
text1 = "Sample text 1"
|
||||
text2 = "Sample text 2"
|
||||
self.cache.add(text1)
|
||||
|
@ -46,12 +59,9 @@ class TestLocalCache(unittest.TestCase):
|
|||
result = self.cache.get_relevant(text1, 1)
|
||||
self.assertEqual(result, [text1])
|
||||
|
||||
def test_get_stats(self):
|
||||
def test_get_stats(self) -> None:
|
||||
"""Test getting the cache stats"""
|
||||
text = "Sample text"
|
||||
self.cache.add(text)
|
||||
stats = self.cache.get_stats()
|
||||
self.assertEqual(stats, (1, self.cache.data.embeddings.shape))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
self.assertEqual(stats, (4, self.cache.data.embeddings.shape))
|
||||
|
|
|
@ -1,63 +1,72 @@
|
|||
# sourcery skip: snake-case-functions
|
||||
"""Tests for the MilvusMemory class."""
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
from autogpt.memory.milvus import MilvusMemory
|
||||
try:
|
||||
from autogpt.memory.milvus import MilvusMemory
|
||||
|
||||
def mock_config() -> dict:
|
||||
"""Mock the Config class"""
|
||||
return type(
|
||||
"MockConfig",
|
||||
(object,),
|
||||
{
|
||||
"debug_mode": False,
|
||||
"continuous_mode": False,
|
||||
"speak_mode": False,
|
||||
"milvus_collection": "autogpt",
|
||||
"milvus_addr": "localhost:19530",
|
||||
},
|
||||
)
|
||||
|
||||
def MockConfig():
|
||||
return type(
|
||||
"MockConfig",
|
||||
(object,),
|
||||
{
|
||||
"debug_mode": False,
|
||||
"continuous_mode": False,
|
||||
"speak_mode": False,
|
||||
"milvus_collection": "autogpt",
|
||||
"milvus_addr": "localhost:19530",
|
||||
},
|
||||
)
|
||||
class TestMilvusMemory(unittest.TestCase):
|
||||
"""Tests for the MilvusMemory class."""
|
||||
|
||||
def setUp(self) -> None:
|
||||
"""Set up the test environment"""
|
||||
self.cfg = MockConfig()
|
||||
self.memory = MilvusMemory(self.cfg)
|
||||
|
||||
class TestMilvusMemory(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.cfg = MockConfig()
|
||||
self.memory = MilvusMemory(self.cfg)
|
||||
def test_add(self) -> None:
|
||||
"""Test adding a text to the cache"""
|
||||
text = "Sample text"
|
||||
self.memory.clear()
|
||||
self.memory.add(text)
|
||||
result = self.memory.get(text)
|
||||
self.assertEqual([text], result)
|
||||
|
||||
def test_add(self):
|
||||
text = "Sample text"
|
||||
self.memory.clear()
|
||||
self.memory.add(text)
|
||||
result = self.memory.get(text)
|
||||
self.assertEqual([text], result)
|
||||
def test_clear(self) -> None:
|
||||
"""Test clearing the cache"""
|
||||
self.memory.clear()
|
||||
self.assertEqual(self.memory.collection.num_entities, 0)
|
||||
|
||||
def test_clear(self):
|
||||
self.memory.clear()
|
||||
self.assertEqual(self.memory.collection.num_entities, 0)
|
||||
def test_get(self) -> None:
|
||||
"""Test getting a text from the cache"""
|
||||
text = "Sample text"
|
||||
self.memory.clear()
|
||||
self.memory.add(text)
|
||||
result = self.memory.get(text)
|
||||
self.assertEqual(result, [text])
|
||||
|
||||
def test_get(self):
|
||||
text = "Sample text"
|
||||
self.memory.clear()
|
||||
self.memory.add(text)
|
||||
result = self.memory.get(text)
|
||||
self.assertEqual(result, [text])
|
||||
def test_get_relevant(self) -> None:
|
||||
"""Test getting relevant texts from the cache"""
|
||||
text1 = "Sample text 1"
|
||||
text2 = "Sample text 2"
|
||||
self.memory.clear()
|
||||
self.memory.add(text1)
|
||||
self.memory.add(text2)
|
||||
result = self.memory.get_relevant(text1, 1)
|
||||
self.assertEqual(result, [text1])
|
||||
|
||||
def test_get_relevant(self):
|
||||
text1 = "Sample text 1"
|
||||
text2 = "Sample text 2"
|
||||
self.memory.clear()
|
||||
self.memory.add(text1)
|
||||
self.memory.add(text2)
|
||||
result = self.memory.get_relevant(text1, 1)
|
||||
self.assertEqual(result, [text1])
|
||||
def test_get_stats(self) -> None:
|
||||
"""Test getting the cache stats"""
|
||||
text = "Sample text"
|
||||
self.memory.clear()
|
||||
self.memory.add(text)
|
||||
stats = self.memory.get_stats()
|
||||
self.assertEqual(15, len(stats))
|
||||
|
||||
def test_get_stats(self):
|
||||
text = "Sample text"
|
||||
self.memory.clear()
|
||||
self.memory.add(text)
|
||||
stats = self.memory.get_stats()
|
||||
self.assertEqual(15, len(stats))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
except:
|
||||
print("Milvus not installed, skipping tests")
|
||||
|
|
|
@ -1,31 +1,34 @@
|
|||
"""Smoke test for the autogpt package."""
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
import pytest
|
||||
|
||||
from autogpt.commands.file_operations import delete_file, read_file
|
||||
|
||||
env_vars = {"MEMORY_BACKEND": "no_memory", "TEMPERATURE": "0"}
|
||||
|
||||
@pytest.mark.integration_test
|
||||
def test_write_file() -> None:
|
||||
"""
|
||||
Test case to check if the write_file command can successfully write 'Hello World' to a file
|
||||
named 'hello_world.txt'.
|
||||
|
||||
class TestCommands(unittest.TestCase):
|
||||
def test_write_file(self):
|
||||
# Test case to check if the write_file command can successfully write 'Hello World' to a file
|
||||
# named 'hello_world.txt'.
|
||||
Read the current ai_settings.yaml file and store its content.
|
||||
"""
|
||||
env_vars = {"MEMORY_BACKEND": "no_memory", "TEMPERATURE": "0"}
|
||||
ai_settings = None
|
||||
if os.path.exists("ai_settings.yaml"):
|
||||
with open("ai_settings.yaml", "r") as f:
|
||||
ai_settings = f.read()
|
||||
os.remove("ai_settings.yaml")
|
||||
|
||||
# Read the current ai_settings.yaml file and store its content.
|
||||
ai_settings = None
|
||||
if os.path.exists("ai_settings.yaml"):
|
||||
with open("ai_settings.yaml", "r") as f:
|
||||
ai_settings = f.read()
|
||||
os.remove("ai_settings.yaml")
|
||||
|
||||
try:
|
||||
if os.path.exists("hello_world.txt"):
|
||||
# Clean up any existing 'hello_world.txt' file before testing.
|
||||
delete_file("hello_world.txt")
|
||||
# Prepare input data for the test.
|
||||
input_data = """write_file-GPT
|
||||
try:
|
||||
if os.path.exists("hello_world.txt"):
|
||||
# Clean up any existing 'hello_world.txt' file before testing.
|
||||
delete_file("hello_world.txt")
|
||||
# Prepare input data for the test.
|
||||
input_data = """write_file-GPT
|
||||
an AI designed to use the write_file command to write 'Hello World' into a file named "hello_world.txt" and then use the task_complete command to complete the task.
|
||||
Use the write_file command to write 'Hello World' into a file named "hello_world.txt".
|
||||
Use the task_complete command to complete the task.
|
||||
|
@ -33,31 +36,24 @@ Do not use any other commands.
|
|||
|
||||
y -5
|
||||
EOF"""
|
||||
command = f"{sys.executable} -m autogpt"
|
||||
command = f"{sys.executable} -m autogpt"
|
||||
|
||||
# Execute the script with the input data.
|
||||
process = subprocess.Popen(
|
||||
command,
|
||||
stdin=subprocess.PIPE,
|
||||
shell=True,
|
||||
env={**os.environ, **env_vars},
|
||||
)
|
||||
process.communicate(input_data.encode())
|
||||
|
||||
# Read the content of the 'hello_world.txt' file created during the test.
|
||||
content = read_file("hello_world.txt")
|
||||
finally:
|
||||
if ai_settings:
|
||||
# Restore the original ai_settings.yaml file.
|
||||
with open("ai_settings.yaml", "w") as f:
|
||||
f.write(ai_settings)
|
||||
|
||||
# Check if the content of the 'hello_world.txt' file is equal to 'Hello World'.
|
||||
self.assertEqual(
|
||||
content, "Hello World", f"Expected 'Hello World', got {content}"
|
||||
# Execute the script with the input data.
|
||||
process = subprocess.Popen(
|
||||
command,
|
||||
stdin=subprocess.PIPE,
|
||||
shell=True,
|
||||
env={**os.environ, **env_vars},
|
||||
)
|
||||
process.communicate(input_data.encode())
|
||||
|
||||
# Read the content of the 'hello_world.txt' file created during the test.
|
||||
content = read_file("hello_world.txt")
|
||||
finally:
|
||||
if ai_settings:
|
||||
# Restore the original ai_settings.yaml file.
|
||||
with open("ai_settings.yaml", "w") as f:
|
||||
f.write(ai_settings)
|
||||
|
||||
# Run the test case.
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
# Check if the content of the 'hello_world.txt' file is equal to 'Hello World'.
|
||||
assert content == "Hello World", f"Expected 'Hello World', got {content}"
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
import shutil
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from autogpt.commands.command import Command, CommandRegistry
|
||||
|
||||
|
||||
|
@ -138,7 +140,7 @@ class TestCommandRegistry:
|
|||
def test_import_mock_commands_module(self):
|
||||
"""Test that the registry can import a module with mock command plugins."""
|
||||
registry = CommandRegistry()
|
||||
mock_commands_module = "auto_gpt.tests.mocks.mock_commands"
|
||||
mock_commands_module = "tests.mocks.mock_commands"
|
||||
|
||||
registry.import_commands(mock_commands_module)
|
||||
|
||||
|
@ -154,7 +156,7 @@ class TestCommandRegistry:
|
|||
registry = CommandRegistry()
|
||||
|
||||
# Create a temp command file
|
||||
src = Path("/app/auto_gpt/tests/mocks/mock_commands.py")
|
||||
src = Path(os.getcwd()) / "tests/mocks/mock_commands.py"
|
||||
temp_commands_file = tmp_path / "mock_commands.py"
|
||||
shutil.copyfile(src, temp_commands_file)
|
||||
|
||||
|
|
|
@ -38,6 +38,7 @@ class TestPromptGenerator(TestCase):
|
|||
"label": command_label,
|
||||
"name": command_name,
|
||||
"args": args,
|
||||
"function": None,
|
||||
}
|
||||
self.assertIn(command, self.generator.commands)
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import unittest
|
||||
|
||||
import tests.context
|
||||
from autogpt.token_counter import count_message_tokens, count_string_tokens
|
||||
|
||||
|
|
|
@ -9,16 +9,20 @@ Code Analysis
|
|||
|
||||
Objective:
|
||||
The objective of the "scrape_text" function is to scrape the text content from
|
||||
a given URL and return it as a string, after removing any unwanted HTML tags and scripts.
|
||||
a given URL and return it as a string, after removing any unwanted HTML tags and
|
||||
scripts.
|
||||
|
||||
Inputs:
|
||||
- url: a string representing the URL of the webpage to be scraped.
|
||||
|
||||
Flow:
|
||||
1. Send a GET request to the given URL using the requests library and the user agent header from the config file.
|
||||
1. Send a GET request to the given URL using the requests library and the user agent
|
||||
header from the config file.
|
||||
2. Check if the response contains an HTTP error. If it does, return an error message.
|
||||
3. Use BeautifulSoup to parse the HTML content of the response and extract all script and style tags.
|
||||
4. Get the text content of the remaining HTML using the get_text() method of BeautifulSoup.
|
||||
3. Use BeautifulSoup to parse the HTML content of the response and extract all script
|
||||
and style tags.
|
||||
4. Get the text content of the remaining HTML using the get_text() method of
|
||||
BeautifulSoup.
|
||||
5. Split the text into lines and then into chunks, removing any extra whitespace.
|
||||
6. Join the chunks into a single string with newline characters between them.
|
||||
7. Return the cleaned text.
|
||||
|
@ -27,9 +31,12 @@ Outputs:
|
|||
- A string representing the cleaned text content of the webpage.
|
||||
|
||||
Additional aspects:
|
||||
- The function uses the requests library and BeautifulSoup to handle the HTTP request and HTML parsing, respectively.
|
||||
- The function removes script and style tags from the HTML to avoid including unwanted content in the text output.
|
||||
- The function uses a generator expression to split the text into lines and chunks, which can improve performance for large amounts of text.
|
||||
- The function uses the requests library and BeautifulSoup to handle the HTTP request
|
||||
and HTML parsing, respectively.
|
||||
- The function removes script and style tags from the HTML to avoid including unwanted
|
||||
content in the text output.
|
||||
- The function uses a generator expression to split the text into lines and chunks,
|
||||
which can improve performance for large amounts of text.
|
||||
"""
|
||||
|
||||
|
||||
|
@ -40,26 +47,33 @@ class TestScrapeText:
|
|||
expected_text = "This is some sample text"
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = f"<html><body><div><p style='color: blue;'>{expected_text}</p></div></body></html>"
|
||||
mock_response.text = (
|
||||
"<html><body><div><p style='color: blue;'>"
|
||||
f"{expected_text}</p></div></body></html>"
|
||||
)
|
||||
mocker.patch("requests.Session.get", return_value=mock_response)
|
||||
|
||||
# Call the function with a valid URL and assert that it returns the expected text
|
||||
# Call the function with a valid URL and assert that it returns the
|
||||
# expected text
|
||||
url = "http://www.example.com"
|
||||
assert scrape_text(url) == expected_text
|
||||
|
||||
# Tests that the function returns an error message when an invalid or unreachable url is provided.
|
||||
# Tests that the function returns an error message when an invalid or unreachable
|
||||
# url is provided.
|
||||
def test_invalid_url(self, mocker):
|
||||
# Mock the requests.get() method to raise an exception
|
||||
mocker.patch(
|
||||
"requests.Session.get", side_effect=requests.exceptions.RequestException
|
||||
)
|
||||
|
||||
# Call the function with an invalid URL and assert that it returns an error message
|
||||
# Call the function with an invalid URL and assert that it returns an error
|
||||
# message
|
||||
url = "http://www.invalidurl.com"
|
||||
error_message = scrape_text(url)
|
||||
assert "Error:" in error_message
|
||||
|
||||
# Tests that the function returns an empty string when the html page contains no text to be scraped.
|
||||
# Tests that the function returns an empty string when the html page contains no
|
||||
# text to be scraped.
|
||||
def test_no_text(self, mocker):
|
||||
# Mock the requests.get() method to return a response with no text
|
||||
mock_response = mocker.Mock()
|
||||
|
@ -71,7 +85,8 @@ class TestScrapeText:
|
|||
url = "http://www.example.com"
|
||||
assert scrape_text(url) == ""
|
||||
|
||||
# Tests that the function returns an error message when the response status code is an http error (>=400).
|
||||
# Tests that the function returns an error message when the response status code is
|
||||
# an http error (>=400).
|
||||
def test_http_error(self, mocker):
|
||||
# Mock the requests.get() method to return a response with a 404 status code
|
||||
mocker.patch("requests.Session.get", return_value=mocker.Mock(status_code=404))
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Generated by CodiumAI
|
||||
import unittest
|
||||
import time
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
from autogpt.chat import create_chat_message, generate_context
|
||||
|
|
|
@ -1,18 +1,22 @@
|
|||
"""Unit tests for the commands module"""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
import autogpt.agent.agent_manager as agent_manager
|
||||
from autogpt.app import start_agent, list_agents, execute_command
|
||||
import unittest
|
||||
from unittest.mock import patch, MagicMock
|
||||
from autogpt.app import execute_command, list_agents, start_agent
|
||||
|
||||
|
||||
class TestCommands(unittest.TestCase):
|
||||
def test_make_agent(self):
|
||||
with patch("openai.ChatCompletion.create") as mock:
|
||||
obj = MagicMock()
|
||||
obj.response.choices[0].messages[0].content = "Test message"
|
||||
mock.return_value = obj
|
||||
start_agent("Test Agent", "chat", "Hello, how are you?", "gpt2")
|
||||
agents = list_agents()
|
||||
self.assertEqual("List of agents:\n0: chat", agents)
|
||||
start_agent("Test Agent 2", "write", "Hello, how are you?", "gpt2")
|
||||
agents = list_agents()
|
||||
self.assertEqual("List of agents:\n0: chat\n1: write", agents)
|
||||
@pytest.mark.integration_test
|
||||
def test_make_agent() -> None:
|
||||
"""Test the make_agent command"""
|
||||
with patch("openai.ChatCompletion.create") as mock:
|
||||
obj = MagicMock()
|
||||
obj.response.choices[0].messages[0].content = "Test message"
|
||||
mock.return_value = obj
|
||||
start_agent("Test Agent", "chat", "Hello, how are you?", "gpt2")
|
||||
agents = list_agents()
|
||||
assert "List of agents:\n0: chat" == agents
|
||||
start_agent("Test Agent 2", "write", "Hello, how are you?", "gpt2")
|
||||
agents = list_agents()
|
||||
assert "List of agents:\n0: chat\n1: write" == agents
|
||||
|
|
Loading…
Reference in New Issue