Added script to load data into a df (#348)

Co-authored-by: SwiftyOS <craigswift13@gmail.com>
pull/5155/head
Silen Naihin 2023-09-01 10:31:04 -07:00 committed by GitHub
parent 819764372e
commit abed1ae879
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 181 additions and 0 deletions

181
match_records.py Normal file
View File

@ -0,0 +1,181 @@
import os
import json
import pandas as pd
import glob
from gql.transport.aiohttp import AIOHTTPTransport
from gql import gql, Client
import os
def get_reports():
# Initialize an empty list to store the report data
report_data = []
# Specify the path to the reports directory
reports_dir = 'reports'
# Iterate over all agent directories in the reports directory
for agent_name in os.listdir(reports_dir):
agent_dir = os.path.join(reports_dir, agent_name)
# Check if the item is a directory (an agent directory)
if os.path.isdir(agent_dir):
# Construct the path to the report.json file
# Use glob to find all run directories in the agent_dir
run_dirs = glob.glob(os.path.join(agent_dir, '*'))
# For each run directory, add the report.json to the end
report_files = [os.path.join(run_dir, 'report.json') for run_dir in run_dirs]
for report_file in report_files:
# Check if the report.json file exists
if os.path.isfile(report_file):
# Open the report.json file
with open(report_file, 'r') as f:
# Load the JSON data from the file
report = json.load(f)
# Iterate over all tests in the report
for test_name, test_data in report['tests'].items():
try:
# Append the relevant data to the report_data list
if agent_name is not None:
report_data.append({
'agent': agent_name.lower(),
'benchmark_start_time': report['benchmark_start_time'],
'challenge': test_name,
'categories': ', '.join(test_data['category']),
'task': test_data['task'],
'success': test_data['metrics']['success'],
'difficulty': test_data['metrics']['difficulty'],
'success_%': test_data['metrics']['success_%'],
'run_time': test_data['metrics']['run_time']
})
except KeyError:
pass
return pd.DataFrame(report_data)
def get_helicone_data():
helicone_api_key = os.getenv('HELICONE_API_KEY')
url = "https://www.helicone.ai/api/graphql"
# Replace <KEY> with your personal access key
transport = AIOHTTPTransport(url=url, headers={
"authorization": f"Bearer {helicone_api_key}"
})
client = Client(transport=transport, fetch_schema_from_transport=True)
SIZE = 250
i = 0
data = []
print("Fetching data from Helicone")
while True:
query = gql(
"""
query ExampleQuery($limit: Int, $offset: Int){
heliconeRequest(
limit: $limit
offset: $offset
) {
prompt
properties{
name
value
}
requestBody
response
createdAt
}
}
"""
)
print(f"Fetching {i * SIZE} to {(i + 1) * SIZE} records")
try:
result = client.execute(query,
variable_values={
"limit": SIZE,
"offset": i * SIZE
}
)
except Exception as e:
print(f"Error occurred: {e}")
result = None
i += 1
if result:
for item in result["heliconeRequest"]:
properties = {prop['name']: prop['value'] for prop in item['properties']}
data.append({
'createdAt': item['createdAt'],
'agent': properties.get('agent'),
'job_id': properties.get('job_id'),
'challenge': properties.get('challenge'),
'benchmark_start_time': properties.get('benchmark_start_time'),
'prompt': item['prompt'],
'model': item['requestBody'].get('model'),
'request': item['requestBody'].get('messages'),
})
if not result or (len(result["heliconeRequest"]) == 0):
print("No more results")
break
df = pd.DataFrame(data)
# Drop rows where agent is None
df = df.dropna(subset=['agent'])
# Convert the remaining agent names to lowercase
df['agent'] = df['agent'].str.lower()
return df
if os.path.exists('reports_raw.pkl') and os.path.exists('helicone_raw.pkl'):
reports_df = pd.read_pickle('reports_raw.pkl')
helicone_df = pd.read_pickle('helicone_raw.pkl')
else:
reports_df = get_reports()
reports_df.to_pickle('reports_raw.pkl')
helicone_df = get_helicone_data()
helicone_df.to_pickle('helicone_raw.pkl')
def try_formats(date_str):
formats = ['%Y-%m-%d-%H:%M', '%Y-%m-%dT%H:%M:%S%z']
for fmt in formats:
try:
return pd.to_datetime(date_str, format=fmt)
except ValueError:
pass
return None
helicone_df['benchmark_start_time'] = pd.to_datetime(helicone_df['benchmark_start_time'].apply(try_formats), utc=True)
helicone_df = helicone_df.dropna(subset=['benchmark_start_time'])
helicone_df['createdAt'] = pd.to_datetime(helicone_df['createdAt'], unit='ms', origin='unix')
reports_df['benchmark_start_time'] = pd.to_datetime(reports_df['benchmark_start_time'].apply(try_formats), utc=True)
reports_df = reports_df.dropna(subset=['benchmark_start_time'])
assert pd.api.types.is_datetime64_any_dtype(helicone_df['benchmark_start_time']), "benchmark_start_time in helicone_df is not datetime"
assert pd.api.types.is_datetime64_any_dtype(reports_df['benchmark_start_time']), "benchmark_start_time in reports_df is not datetime"
reports_df['report_time'] = reports_df['benchmark_start_time']
df = pd.merge_asof(helicone_df.sort_values('benchmark_start_time'),
reports_df.sort_values('benchmark_start_time'),
left_on='benchmark_start_time',
right_on='benchmark_start_time',
by=['agent', 'challenge'],
direction='backward')
df.to_pickle('df.pkl')
print(df.info())
print("Data saved to df.pkl")
print("To load the data use: df = pd.read_pickle('df.pkl')")