Merge branch 'master' of github.com:Torantulino/Auto-GPT into attr-error-lower
commit
a40943ab80
36
README.md
36
README.md
|
@ -57,7 +57,7 @@ Your support is greatly appreciated
|
|||
- 🗃️ File storage and summarization with GPT-3.5
|
||||
|
||||
## 📋 Requirements
|
||||
- [Python 3.7 or later](https://www.tutorialspoint.com/how-to-install-python-in-windows)
|
||||
- [Python 3.8 or later](https://www.tutorialspoint.com/how-to-install-python-in-windows)
|
||||
- OpenAI API key
|
||||
- PINECONE API key
|
||||
|
||||
|
@ -141,6 +141,40 @@ export CUSTOM_SEARCH_ENGINE_ID="YOUR_CUSTOM_SEARCH_ENGINE_ID"
|
|||
|
||||
```
|
||||
|
||||
## Redis Setup
|
||||
|
||||
Install docker desktop.
|
||||
|
||||
Run:
|
||||
```
|
||||
docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest
|
||||
```
|
||||
See https://hub.docker.com/r/redis/redis-stack-server for setting a password and additional configuration.
|
||||
|
||||
Set the following environment variables:
|
||||
```
|
||||
MEMORY_BACKEND=redis
|
||||
REDIS_HOST=localhost
|
||||
REDIS_PORT=6379
|
||||
REDIS_PASSWORD=
|
||||
```
|
||||
|
||||
Note that this is not intended to be run facing the internet and is not secure, do not expose redis to the internet without a password or at all really.
|
||||
|
||||
You can optionally set
|
||||
|
||||
```
|
||||
WIPE_REDIS_ON_START=False
|
||||
```
|
||||
|
||||
To persist memory stored in Redis.
|
||||
|
||||
You can specify the memory index for redis using the following:
|
||||
|
||||
````
|
||||
MEMORY_INDEX=whatever
|
||||
````
|
||||
|
||||
## 🌲 Pinecone API Key Setup
|
||||
|
||||
Pinecone enable a vector based memory so a vast memory can be stored and only relevant memories
|
||||
|
|
|
@ -12,4 +12,6 @@ docker
|
|||
duckduckgo-search
|
||||
google-api-python-client #(https://developers.google.com/custom-search/v1/overview)
|
||||
pinecone-client==2.2.1
|
||||
redis
|
||||
orjson
|
||||
Pillow
|
||||
|
|
|
@ -26,8 +26,11 @@ def create_chat_message(role, content):
|
|||
def generate_context(prompt, relevant_memory, full_message_history, model):
|
||||
current_context = [
|
||||
create_chat_message(
|
||||
"system", prompt), create_chat_message(
|
||||
"system", f"Permanent memory: {relevant_memory}")]
|
||||
"system", prompt),
|
||||
create_chat_message(
|
||||
"system", f"The current time and date is {time.strftime('%c')}"),
|
||||
create_chat_message(
|
||||
"system", f"This reminds you of these events from your past:\n{relevant_memory}\n\n")]
|
||||
|
||||
# Add messages from the full message history until we reach the token limit
|
||||
next_message_to_add_index = len(full_message_history) - 1
|
||||
|
@ -95,7 +98,7 @@ def chat_with_ai(
|
|||
|
||||
# Count the currently used tokens
|
||||
current_tokens_used += tokens_to_add
|
||||
|
||||
|
||||
# Move to the next most recent message in the full message history
|
||||
next_message_to_add_index -= 1
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import browse
|
||||
import json
|
||||
from memory import PineconeMemory
|
||||
from memory import get_memory
|
||||
import datetime
|
||||
import agent_manager as agents
|
||||
import speak
|
||||
|
@ -53,10 +53,11 @@ def get_command(response):
|
|||
|
||||
|
||||
def execute_command(command_name, arguments):
|
||||
memory = PineconeMemory()
|
||||
memory = get_memory(cfg)
|
||||
|
||||
try:
|
||||
if command_name == "google":
|
||||
|
||||
|
||||
# Check if the Google API key is set and use the official search method
|
||||
# If the API key is not set or has only whitespaces, use the unofficial search method
|
||||
if cfg.google_api_key and (cfg.google_api_key.strip() if cfg.google_api_key else None):
|
||||
|
@ -108,7 +109,7 @@ def execute_command(command_name, arguments):
|
|||
elif command_name == "task_complete":
|
||||
shutdown()
|
||||
else:
|
||||
return f"Unknown command {command_name}"
|
||||
return f"Unknown command '{command_name}'. Please refer to the 'COMMANDS' list for availabe commands and only respond in the specified JSON format."
|
||||
# All errors, return "Error: + error message"
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import abc
|
||||
import os
|
||||
import openai
|
||||
from dotenv import load_dotenv
|
||||
|
@ -5,7 +6,7 @@ from dotenv import load_dotenv
|
|||
load_dotenv()
|
||||
|
||||
|
||||
class Singleton(type):
|
||||
class Singleton(abc.ABCMeta, type):
|
||||
"""
|
||||
Singleton metaclass for ensuring only one instance of a class.
|
||||
"""
|
||||
|
@ -20,12 +21,17 @@ class Singleton(type):
|
|||
return cls._instances[cls]
|
||||
|
||||
|
||||
class AbstractSingleton(abc.ABC, metaclass=Singleton):
|
||||
pass
|
||||
|
||||
|
||||
class Config(metaclass=Singleton):
|
||||
"""
|
||||
Configuration class to store the state of bools for different scripts access.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.debug = False
|
||||
self.continuous_mode = False
|
||||
self.speak_mode = False
|
||||
# TODO - make these models be self-contained, using langchain, so we can configure them once and call it good
|
||||
|
@ -59,7 +65,14 @@ class Config(metaclass=Singleton):
|
|||
# User agent headers to use when browsing web
|
||||
# Some websites might just completely deny request with an error code if no user agent was found.
|
||||
self.user_agent_header = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"}
|
||||
self.redis_host = os.getenv("REDIS_HOST", "localhost")
|
||||
self.redis_port = os.getenv("REDIS_PORT", "6379")
|
||||
self.redis_password = os.getenv("REDIS_PASSWORD", "")
|
||||
self.wipe_redis_on_start = os.getenv("WIPE_REDIS_ON_START", "True") == 'True'
|
||||
self.memory_index = os.getenv("MEMORY_INDEX", 'auto-gpt')
|
||||
# Note that indexes must be created on db 0 in redis, this is not configureable.
|
||||
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", 'local')
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
|
@ -98,3 +111,6 @@ class Config(metaclass=Singleton):
|
|||
|
||||
def set_pinecone_region(self, value: str):
|
||||
self.pinecone_region = value
|
||||
|
||||
def set_debug_mode(self, value: bool):
|
||||
self.debug = value
|
||||
|
|
|
@ -18,7 +18,7 @@ COMMANDS:
|
|||
12. Append to file: "append_to_file", args: "file": "<file>", "text": "<text>"
|
||||
13. Delete file: "delete_file", args: "file": "<file>"
|
||||
14. Search Files: "search_files", args: "directory": "<directory>"
|
||||
15. Evaluate Code: "evaluate_code", args: "code": "<full _code_string>"
|
||||
15. Evaluate Code: "evaluate_code", args: "code": "<full_code_string>"
|
||||
16. Get Improved Code: "improve_code", args: "suggestions": "<list_of_suggestions>", "code": "<full_code_string>"
|
||||
17. Write Tests: "write_tests", args: "code": "<full_code_string>", "focus": "<list_of_focus_areas>"
|
||||
18. Execute Python File: "execute_python_file", args: "file": "<file>"
|
||||
|
|
|
@ -40,7 +40,7 @@ def fix_and_parse_json(json_str: str, try_to_fix_with_gpt: bool = True):
|
|||
if try_to_fix_with_gpt:
|
||||
print(f"Warning: Failed to parse AI output, attempting to fix.\n If you see this warning frequently, it's likely that your prompt is confusing the AI. Try changing it up slightly.")
|
||||
# Now try to fix this up using the ai_functions
|
||||
ai_fixed_json = fix_json(json_str, json_schema, False)
|
||||
ai_fixed_json = fix_json(json_str, json_schema, cfg.debug)
|
||||
if ai_fixed_json != "failed":
|
||||
return json.loads(ai_fixed_json)
|
||||
else:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import json
|
||||
import random
|
||||
import commands as cmd
|
||||
from memory import PineconeMemory
|
||||
from memory import get_memory
|
||||
import data
|
||||
import chat
|
||||
from colorama import Fore, Style
|
||||
|
@ -123,7 +123,7 @@ def load_variables(config_file="config.yaml"):
|
|||
if ai_name == "":
|
||||
ai_name = "Entrepreneur-GPT"
|
||||
|
||||
if not ai_role:
|
||||
if not ai_role:
|
||||
ai_role = input(f"{ai_name} is: ")
|
||||
if ai_role == "":
|
||||
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
|
||||
|
@ -140,7 +140,7 @@ def load_variables(config_file="config.yaml"):
|
|||
ai_goals.append(ai_goal)
|
||||
if len(ai_goals) == 0:
|
||||
ai_goals = ["Increase net worth", "Grow Twitter Account", "Develop and manage multiple businesses autonomously"]
|
||||
|
||||
|
||||
# Save variables to yaml file
|
||||
config = {"ai_name": ai_name, "ai_role": ai_role, "ai_goals": ai_goals}
|
||||
with open(config_file, "w") as file:
|
||||
|
@ -166,22 +166,22 @@ def construct_prompt():
|
|||
Fore.GREEN,
|
||||
f"Would you like me to return to being {config.ai_name}?",
|
||||
speak_text=True)
|
||||
should_continue = input(f"""Continue with the last settings?
|
||||
should_continue = input(f"""Continue with the last settings?
|
||||
Name: {config.ai_name}
|
||||
Role: {config.ai_role}
|
||||
Goals: {config.ai_goals}
|
||||
Goals: {config.ai_goals}
|
||||
Continue (y/n): """)
|
||||
if should_continue.lower() == "n":
|
||||
config = AIConfig()
|
||||
|
||||
if not config.ai_name:
|
||||
if not config.ai_name:
|
||||
config = prompt_user()
|
||||
config.save()
|
||||
|
||||
# Get rid of this global:
|
||||
global ai_name
|
||||
ai_name = config.ai_name
|
||||
|
||||
|
||||
full_prompt = config.construct_full_prompt()
|
||||
return full_prompt
|
||||
|
||||
|
@ -242,7 +242,7 @@ def parse_arguments():
|
|||
global cfg
|
||||
cfg.set_continuous_mode(False)
|
||||
cfg.set_speak_mode(False)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process arguments.')
|
||||
parser.add_argument('--continuous', action='store_true', help='Enable Continuous Mode')
|
||||
parser.add_argument('--speak', action='store_true', help='Enable Speak Mode')
|
||||
|
@ -266,6 +266,10 @@ def parse_arguments():
|
|||
print_to_console("GPT3.5 Only Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_smart_llm_model(cfg.fast_llm_model)
|
||||
|
||||
if args.debug:
|
||||
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_debug_mode(True)
|
||||
|
||||
|
||||
# TODO: fill in llm values here
|
||||
|
||||
|
@ -281,12 +285,9 @@ next_action_count = 0
|
|||
# Make a constant:
|
||||
user_input = "Determine which next command to use, and respond using the format specified above:"
|
||||
|
||||
# raise an exception if pinecone_api_key or region is not provided
|
||||
if not cfg.pinecone_api_key or not cfg.pinecone_region: raise Exception("Please provide pinecone_api_key and pinecone_region")
|
||||
# Initialize memory and make sure it is empty.
|
||||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = PineconeMemory()
|
||||
memory.clear()
|
||||
memory = get_memory(cfg, init=True)
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
|
||||
# Interaction Loop
|
||||
|
@ -298,7 +299,7 @@ while True:
|
|||
user_input,
|
||||
full_message_history,
|
||||
memory,
|
||||
cfg.fast_token_limit) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
|
||||
cfg.fast_token_limit, cfg.debug) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
|
||||
|
||||
# Print Assistant thoughts
|
||||
print_assistant_thoughts(assistant_reply)
|
||||
|
@ -358,7 +359,7 @@ while True:
|
|||
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
|
||||
|
||||
# Execute command
|
||||
if command_name is not None and command_name.lower() == "error":
|
||||
if command_name is not None and command_name.lower().startswith( "error" ):
|
||||
result = f"Command {command_name} threw the following error: " + arguments
|
||||
elif command_name == "human_feedback":
|
||||
result = f"Human feedback: {user_input}"
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
from memory.local import LocalCache
|
||||
try:
|
||||
from memory.redismem import RedisMemory
|
||||
except ImportError:
|
||||
print("Redis not installed. Skipping import.")
|
||||
RedisMemory = None
|
||||
|
||||
try:
|
||||
from memory.pinecone import PineconeMemory
|
||||
except ImportError:
|
||||
print("Pinecone not installed. Skipping import.")
|
||||
PineconeMemory = None
|
||||
|
||||
|
||||
def get_memory(cfg, init=False):
|
||||
memory = None
|
||||
if cfg.memory_backend == "pinecone":
|
||||
if not PineconeMemory:
|
||||
print("Error: Pinecone is not installed. Please install pinecone"
|
||||
" to use Pinecone as a memory backend.")
|
||||
else:
|
||||
memory = PineconeMemory(cfg)
|
||||
if init:
|
||||
memory.clear()
|
||||
elif cfg.memory_backend == "redis":
|
||||
if not RedisMemory:
|
||||
print("Error: Redis is not installed. Please install redis-py to"
|
||||
" use Redis as a memory backend.")
|
||||
else:
|
||||
memory = RedisMemory(cfg)
|
||||
|
||||
if memory is None:
|
||||
memory = LocalCache(cfg)
|
||||
if init:
|
||||
memory.clear()
|
||||
return memory
|
||||
|
||||
|
||||
__all__ = [
|
||||
"get_memory",
|
||||
"LocalCache",
|
||||
"RedisMemory",
|
||||
"PineconeMemory",
|
||||
]
|
|
@ -0,0 +1,31 @@
|
|||
"""Base class for memory providers."""
|
||||
import abc
|
||||
from config import AbstractSingleton
|
||||
import openai
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
class MemoryProviderSingleton(AbstractSingleton):
|
||||
@abc.abstractmethod
|
||||
def add(self, data):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get(self, data):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def clear(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_stats(self):
|
||||
pass
|
|
@ -0,0 +1,114 @@
|
|||
import dataclasses
|
||||
import orjson
|
||||
from typing import Any, List, Optional
|
||||
import numpy as np
|
||||
import os
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
EMBED_DIM = 1536
|
||||
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
|
||||
|
||||
|
||||
def create_default_embeddings():
|
||||
return np.zeros((0, EMBED_DIM)).astype(np.float32)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CacheContent:
|
||||
texts: List[str] = dataclasses.field(default_factory=list)
|
||||
embeddings: np.ndarray = dataclasses.field(
|
||||
default_factory=create_default_embeddings
|
||||
)
|
||||
|
||||
|
||||
class LocalCache(MemoryProviderSingleton):
|
||||
|
||||
# on load, load our database
|
||||
def __init__(self, cfg) -> None:
|
||||
self.filename = f"{cfg.memory_index}.json"
|
||||
if os.path.exists(self.filename):
|
||||
with open(self.filename, 'rb') as f:
|
||||
loaded = orjson.loads(f.read())
|
||||
self.data = CacheContent(**loaded)
|
||||
else:
|
||||
self.data = CacheContent()
|
||||
|
||||
def add(self, text: str):
|
||||
"""
|
||||
Add text to our list of texts, add embedding as row to our
|
||||
embeddings-matrix
|
||||
|
||||
Args:
|
||||
text: str
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
if 'Command Error:' in text:
|
||||
return ""
|
||||
self.data.texts.append(text)
|
||||
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
vector = np.array(embedding).astype(np.float32)
|
||||
vector = vector[np.newaxis, :]
|
||||
self.data.embeddings = np.concatenate(
|
||||
[
|
||||
vector,
|
||||
self.data.embeddings,
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
|
||||
with open(self.filename, 'wb') as f:
|
||||
out = orjson.dumps(
|
||||
self.data,
|
||||
option=SAVE_OPTIONS
|
||||
)
|
||||
f.write(out)
|
||||
return text
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.data = CacheContent()
|
||||
return "Obliviated"
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def get_relevant(self, text: str, k: int) -> List[Any]:
|
||||
""""
|
||||
matrix-vector mult to find score-for-each-row-of-matrix
|
||||
get indices for top-k winning scores
|
||||
return texts for those indices
|
||||
Args:
|
||||
text: str
|
||||
k: int
|
||||
|
||||
Returns: List[str]
|
||||
"""
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
scores = np.dot(self.data.embeddings, embedding)
|
||||
|
||||
top_k_indices = np.argsort(scores)[-k:][::-1]
|
||||
|
||||
return [self.data.texts[i] for i in top_k_indices]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the local cache.
|
||||
"""
|
||||
return len(self.data.texts), self.data.embeddings.shape
|
|
@ -1,21 +1,11 @@
|
|||
from config import Config, Singleton
|
||||
|
||||
import pinecone
|
||||
import openai
|
||||
|
||||
cfg = Config()
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
def get_text_from_embedding(embedding):
|
||||
return openai.Embedding.retrieve(embedding, model="text-embedding-ada-002")["data"][0]["text"]
|
||||
|
||||
|
||||
class PineconeMemory(metaclass=Singleton):
|
||||
def __init__(self):
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
pinecone_api_key = cfg.pinecone_api_key
|
||||
pinecone_region = cfg.pinecone_region
|
||||
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
|
|
@ -0,0 +1,143 @@
|
|||
"""Redis memory provider."""
|
||||
from typing import Any, List, Optional
|
||||
import redis
|
||||
from redis.commands.search.field import VectorField, TextField
|
||||
from redis.commands.search.query import Query
|
||||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
import numpy as np
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
SCHEMA = [
|
||||
TextField("data"),
|
||||
VectorField(
|
||||
"embedding",
|
||||
"HNSW",
|
||||
{
|
||||
"TYPE": "FLOAT32",
|
||||
"DIM": 1536,
|
||||
"DISTANCE_METRIC": "COSINE"
|
||||
}
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class RedisMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
"""
|
||||
Initializes the Redis memory provider.
|
||||
|
||||
Args:
|
||||
cfg: The config object.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
redis_host = cfg.redis_host
|
||||
redis_port = cfg.redis_port
|
||||
redis_password = cfg.redis_password
|
||||
self.dimension = 1536
|
||||
self.redis = redis.Redis(
|
||||
host=redis_host,
|
||||
port=redis_port,
|
||||
password=redis_password,
|
||||
db=0 # Cannot be changed
|
||||
)
|
||||
self.cfg = cfg
|
||||
if cfg.wipe_redis_on_start:
|
||||
self.redis.flushall()
|
||||
try:
|
||||
self.redis.ft(f"{cfg.memory_index}").create_index(
|
||||
fields=SCHEMA,
|
||||
definition=IndexDefinition(
|
||||
prefix=[f"{cfg.memory_index}:"],
|
||||
index_type=IndexType.HASH
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error creating Redis search index: ", e)
|
||||
existing_vec_num = self.redis.get(f'{cfg.memory_index}-vec_num')
|
||||
self.vec_num = int(existing_vec_num.decode('utf-8')) if\
|
||||
existing_vec_num else 0
|
||||
|
||||
def add(self, data: str) -> str:
|
||||
"""
|
||||
Adds a data point to the memory.
|
||||
|
||||
Args:
|
||||
data: The data to add.
|
||||
|
||||
Returns: Message indicating that the data has been added.
|
||||
"""
|
||||
if 'Command Error:' in data:
|
||||
return ""
|
||||
vector = get_ada_embedding(data)
|
||||
vector = np.array(vector).astype(np.float32).tobytes()
|
||||
data_dict = {
|
||||
b"data": data,
|
||||
"embedding": vector
|
||||
}
|
||||
pipe = self.redis.pipeline()
|
||||
pipe.hset(f"{self.cfg.memory_index}:{self.vec_num}", mapping=data_dict)
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n"\
|
||||
f"data: {data}"
|
||||
self.vec_num += 1
|
||||
pipe.set(f'{self.cfg.memory_index}-vec_num', self.vec_num)
|
||||
pipe.execute()
|
||||
return _text
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.redis.flushall()
|
||||
return "Obliviated"
|
||||
|
||||
def get_relevant(
|
||||
self,
|
||||
data: str,
|
||||
num_relevant: int = 5
|
||||
) -> Optional[List[Any]]:
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
num_relevant: The number of relevant data to return.
|
||||
|
||||
Returns: A list of the most relevant data.
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]"
|
||||
query = Query(base_query).return_fields(
|
||||
"data",
|
||||
"vector_score"
|
||||
).sort_by("vector_score").dialect(2)
|
||||
query_vector = np.array(query_embedding).astype(np.float32).tobytes()
|
||||
|
||||
try:
|
||||
results = self.redis.ft(f"{self.cfg.memory_index}").search(
|
||||
query, query_params={"vector": query_vector}
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error calling Redis search: ", e)
|
||||
return None
|
||||
return [result.data for result in results.docs]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the memory index.
|
||||
"""
|
||||
return self.redis.ft(f"{self.cfg.memory_index}").info()
|
Loading…
Reference in New Issue