added weaviate to the supported vector memory providers
commit
5fe784aabe
|
@ -2,8 +2,8 @@ PINECONE_API_KEY=your-pinecone-api-key
|
|||
PINECONE_ENV=your-pinecone-region
|
||||
OPENAI_API_KEY=your-openai-api-key
|
||||
ELEVENLABS_API_KEY=your-elevenlabs-api-key
|
||||
SMART_LLM_MODEL="gpt-4"
|
||||
FAST_LLM_MODEL="gpt-3.5-turbo"
|
||||
SMART_LLM_MODEL=gpt-4
|
||||
FAST_LLM_MODEL=gpt-3.5-turbo
|
||||
GOOGLE_API_KEY=
|
||||
CUSTOM_SEARCH_ENGINE_ID=
|
||||
USE_AZURE=False
|
||||
|
@ -14,7 +14,12 @@ WEAVIATE_HOST="http://127.0.0.1"
|
|||
WEAVIATE_PORT="8080"
|
||||
WEAVIATE_USERNAME=
|
||||
WEAVIATE_PASSWORD=
|
||||
WEAVIATE_INDEX="Autogpt"
|
||||
MEMORY_PROVIDER="weaviate"
|
||||
IMAGE_PROVIDER=dalle
|
||||
HUGGINGFACE_API_TOKEN=
|
||||
OPENAI_AZURE_API_BASE=your-base-url-for-azure
|
||||
OPENAI_AZURE_API_VERSION=api-version-for-azure
|
||||
OPENAI_AZURE_DEPLOYMENT_ID=deployment-id-for-azure
|
||||
IMAGE_PROVIDER=dalle
|
||||
USE_MAC_OS_TTS=False
|
||||
MEMORY_INDEX="auto-gpt"
|
||||
MEMORY_BACKEND="local"
|
||||
|
|
|
@ -1,18 +1,33 @@
|
|||
### Background
|
||||
<!-- 📢 Announcement
|
||||
We've recently noticed an increase in pull requests focusing on combining multiple changes. While the intentions behind these PRs are appreciated, it's essential to maintain a clean and manageable git history. To ensure the quality of our repository, we kindly ask you to adhere to the following guidelines when submitting PRs:
|
||||
|
||||
<!-- Provide a brief overview of why this change is being made. Include any relevant context, prior discussions, or links to relevant issues. -->
|
||||
Focus on a single, specific change.
|
||||
Do not include any unrelated or "extra" modifications.
|
||||
Provide clear documentation and explanations of the changes made.
|
||||
Ensure diffs are limited to the intended lines — no applying preferred formatting styles or line endings (unless that's what the PR is about).
|
||||
For guidance on committing only the specific lines you have changed, refer to this helpful video: https://youtu.be/8-hSNHHbiZg
|
||||
|
||||
By following these guidelines, your PRs are more likely to be merged quickly after testing, as long as they align with the project's overall direction. -->
|
||||
|
||||
### Background
|
||||
<!-- Provide a concise overview of the rationale behind this change. Include relevant context, prior discussions, or links to related issues. Ensure that the change aligns with the project's overall direction. -->
|
||||
|
||||
### Changes
|
||||
<!-- Describe the specific, focused change made in this pull request. Detail the modifications clearly and avoid any unrelated or "extra" changes. -->
|
||||
|
||||
<!-- Describe the changes made in this pull request. Be specific and detailed. -->
|
||||
### Documentation
|
||||
<!-- Explain how your changes are documented, such as in-code comments or external documentation. Ensure that the documentation is clear, concise, and easy to understand. -->
|
||||
|
||||
### Test Plan
|
||||
<!-- Describe how you tested this functionality. Include steps to reproduce, relevant test cases, and any other pertinent information. -->
|
||||
|
||||
<!-- Explain how you tested this functionality. Include the steps to reproduce and any relevant test cases. -->
|
||||
### PR Quality Checklist
|
||||
- [ ] My pull request is atomic and focuses on a single change.
|
||||
- [ ] I have thouroughly tested my changes with multiple different prompts.
|
||||
- [ ] I have considered potential risks and mitigations for my changes.
|
||||
- [ ] I have documented my changes clearly and comprehensively.
|
||||
- [ ] I have not snuck in any "extra" small tweaks changes <!-- Submit these as seperate Pull Reqests, they are the easiest to merge! -->
|
||||
|
||||
### Change Safety
|
||||
<!-- If you haven't added tests, please explain why. If you have, check the appropriate box. If you've ensured your PR is atomic and well-documented, check the corresponding boxes. -->
|
||||
|
||||
- [ ] I have added tests to cover my changes
|
||||
- [ ] I have considered potential risks and mitigations for my changes
|
||||
|
||||
<!-- If you haven't added tests, please explain why. If you have, check the appropriate box. -->
|
||||
<!-- By submitting this, I agree that my pull request should be closed if I do not fill this out or follow the guide lines. -->
|
||||
|
|
|
@ -7,5 +7,9 @@ package-lock.json
|
|||
auto_gpt_workspace/*
|
||||
*.mpeg
|
||||
.env
|
||||
venv/*
|
||||
outputs/*
|
||||
ai_settings.yaml
|
||||
ai_settings.yaml
|
||||
.vscode
|
||||
auto-gpt.json
|
||||
log.txt
|
||||
|
|
|
@ -19,7 +19,7 @@ git checkout -b "branch-name"
|
|||
|
||||
5. Add the changes to the staging area using the following command:
|
||||
```
|
||||
git add .
|
||||
git add .
|
||||
```
|
||||
|
||||
6. Commit the changes with a meaningful commit message using the following command:
|
||||
|
|
|
@ -2,6 +2,7 @@ FROM python:3.11
|
|||
|
||||
WORKDIR /app
|
||||
COPY scripts/ /app
|
||||
COPY requirements.txt /app
|
||||
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
|
|
80
README.md
80
README.md
|
@ -9,7 +9,7 @@ Auto-GPT is an experimental open-source application showcasing the capabilities
|
|||
https://user-images.githubusercontent.com/22963551/228855501-2f5777cf-755b-4407-a643-c7299e5b6419.mp4
|
||||
|
||||
|
||||
<h2 align="center"> 💖 Help Fund Auto-GPT's Development 💖</h2>
|
||||
<h2 align="center"> 💖 Help Fund Auto-GPT's Development 💖</h2>
|
||||
<p align="center">
|
||||
If you can spare a coffee, you can help to cover the API costs of developing Auto-GPT and help push the boundaries of fully autonomous AI!
|
||||
A full day of development can easily cost as much as $20 in API costs, which for a free project is quite limiting.
|
||||
|
@ -57,9 +57,9 @@ Your support is greatly appreciated
|
|||
- 🗃️ File storage and summarization with GPT-3.5
|
||||
|
||||
## 📋 Requirements
|
||||
- [Python 3.7 or later](https://www.tutorialspoint.com/how-to-install-python-in-windows)
|
||||
- [Python 3.8 or later](https://www.tutorialspoint.com/how-to-install-python-in-windows)
|
||||
- OpenAI API key
|
||||
- PINECONE API key
|
||||
- [PINECONE API key](https://www.pinecone.io/)
|
||||
|
||||
Optional:
|
||||
- ElevenLabs Key (If you want the AI to speak)
|
||||
|
@ -81,7 +81,7 @@ git clone https://github.com/Torantulino/Auto-GPT.git
|
|||
2. Navigate to the project directory:
|
||||
*(Type this into your CMD window, you're aiming to navigate the CMD window to the repository you just downloaded)*
|
||||
```
|
||||
$ cd 'Auto-GPT'
|
||||
cd 'Auto-GPT'
|
||||
```
|
||||
|
||||
3. Install the required dependencies:
|
||||
|
@ -93,7 +93,7 @@ pip install -r requirements.txt
|
|||
4. Rename `.env.template` to `.env` and fill in your `OPENAI_API_KEY`. If you plan to use Speech Mode, fill in your `ELEVEN_LABS_API_KEY` as well.
|
||||
- Obtain your OpenAI API key from: https://platform.openai.com/account/api-keys.
|
||||
- Obtain your ElevenLabs API key from: https://elevenlabs.io. You can view your xi-api-key using the "Profile" tab on the website.
|
||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_API_BASE`, `OPENAI_API_VERSION` and `OPENAI_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section
|
||||
- If you want to use GPT on an Azure instance, set `USE_AZURE` to `True` and provide the `OPENAI_AZURE_API_BASE`, `OPENAI_AZURE_API_VERSION` and `OPENAI_AZURE_DEPLOYMENT_ID` values as explained here: https://pypi.org/project/openai/ in the `Microsoft Azure Endpoints` section
|
||||
|
||||
## 🔧 Usage
|
||||
|
||||
|
@ -114,7 +114,7 @@ python scripts/main.py --speak
|
|||
|
||||
## 🔍 Google API Keys Configuration
|
||||
|
||||
This section is optional, use the official google api if you are having issues with error 429 when running google search.
|
||||
This section is optional, use the official google api if you are having issues with error 429 when running a google search.
|
||||
To use the `google_official_search` command, you need to set up your Google API keys in your environment variables.
|
||||
|
||||
1. Go to the [Google Cloud Console](https://console.cloud.google.com/).
|
||||
|
@ -127,6 +127,8 @@ To use the `google_official_search` command, you need to set up your Google API
|
|||
8. Set up your search engine by following the prompts. You can choose to search the entire web or specific sites.
|
||||
9. Once you've created your search engine, click on "Control Panel" and then "Basics". Copy the "Search engine ID" and set it as an environment variable named `CUSTOM_SEARCH_ENGINE_ID` on your machine. See setting up environment variables below.
|
||||
|
||||
*Remember that your free daily custom search quota allows only up to 100 searches. To increase this limit, you need to assign a billing account to the project to profit from up to 10K daily searches.*
|
||||
|
||||
### Setting up environment variables
|
||||
For Windows Users:
|
||||
```
|
||||
|
@ -141,26 +143,60 @@ export CUSTOM_SEARCH_ENGINE_ID="YOUR_CUSTOM_SEARCH_ENGINE_ID"
|
|||
|
||||
```
|
||||
|
||||
## Vector based memory provider
|
||||
Auto-GPT supports two providers for vector-based memory, [Pinecone](https://www.pinecone.io/) and [Weaviate](https://weaviate.io/). To select the provider to use, specify the following in your `.env`:
|
||||
## Redis Setup
|
||||
|
||||
Install docker desktop.
|
||||
|
||||
Run:
|
||||
```
|
||||
docker run -d --name redis-stack-server -p 6379:6379 redis/redis-stack-server:latest
|
||||
```
|
||||
See https://hub.docker.com/r/redis/redis-stack-server for setting a password and additional configuration.
|
||||
|
||||
Set the following environment variables:
|
||||
```
|
||||
MEMORY_BACKEND=redis
|
||||
REDIS_HOST=localhost
|
||||
REDIS_PORT=6379
|
||||
REDIS_PASSWORD=
|
||||
```
|
||||
|
||||
Note that this is not intended to be run facing the internet and is not secure, do not expose redis to the internet without a password or at all really.
|
||||
|
||||
You can optionally set
|
||||
|
||||
```
|
||||
MEMORY_PROVIDER="pinecone" # change to "weaviate" to use weaviate as the memory provider
|
||||
WIPE_REDIS_ON_START=False
|
||||
```
|
||||
### 🌲 Pinecone API Key Setup
|
||||
|
||||
Pinecone enable a vector based memory so a vast memory can be stored and only relevant memories
|
||||
are loaded for the agent at any given time.
|
||||
To persist memory stored in Redis.
|
||||
|
||||
You can specify the memory index for redis using the following:
|
||||
|
||||
````
|
||||
MEMORY_INDEX=whatever
|
||||
````
|
||||
|
||||
## 🌲 Pinecone API Key Setup
|
||||
|
||||
Pinecone enables the storage of vast amounts of vector-based memory, allowing for only relevant memories to be loaded for the agent at any given time.
|
||||
|
||||
1. Go to app.pinecone.io and make an account if you don't already have one.
|
||||
2. Choose the `Starter` plan to avoid being charged.
|
||||
3. Find your API key and region under the default project in the left sidebar.
|
||||
|
||||
#### Setting up environment variables
|
||||
For Windows Users:
|
||||
|
||||
### Setting up environment variables
|
||||
|
||||
Simply set them in the `.env` file.
|
||||
|
||||
Alternatively, you can set them from the command line (advanced):
|
||||
|
||||
For Windows Users:
|
||||
|
||||
```
|
||||
setx PINECONE_API_KEY "YOUR_PINECONE_API_KEY"
|
||||
export PINECONE_ENV="Your pinecone region" # something like: us-east4-gcp
|
||||
setx PINECONE_ENV "Your pinecone region" # something like: us-east4-gcp
|
||||
|
||||
```
|
||||
For macOS and Linux users:
|
||||
|
@ -170,9 +206,7 @@ export PINECONE_ENV="Your pinecone region" # something like: us-east4-gcp
|
|||
|
||||
```
|
||||
|
||||
Or you can set them in the `.env` file.
|
||||
|
||||
### Weaviate Setup
|
||||
## Weaviate Setup
|
||||
|
||||
[Weaviate](https://weaviate.io/) is an open-source vector database. It allows to store data objects and vector embeddings from ML-models and scales seamlessly to billion of data objects. [An instance of Weaviate can be created locally (using Docker), on Kubernetes or using Weaviate Cloud Services](https://weaviate.io/developers/weaviate/quickstart).
|
||||
|
||||
|
@ -181,11 +215,12 @@ Or you can set them in the `.env` file.
|
|||
In your `.env` file set the following:
|
||||
|
||||
```
|
||||
MEMORY_BACKEND=weaviate
|
||||
WEAVIATE_HOST="http://127.0.0.1" # the URL of the running Weaviate instance
|
||||
WEAVIATE_PORT="8080"
|
||||
WEAVIATE_USERNAME="your username"
|
||||
WEAVIATE_PASSWORD="your password"
|
||||
WEAVIATE_INDEX="Autogpt" # name of the index to create for the application
|
||||
MEMORY_INDEX="Autogpt" # name of the index to create for the application
|
||||
```
|
||||
|
||||
## View Memory Usage
|
||||
|
@ -195,8 +230,8 @@ WEAVIATE_INDEX="Autogpt" # name of the index to create for the application
|
|||
|
||||
## 💀 Continuous Mode ⚠️
|
||||
Run the AI **without** user authorisation, 100% automated.
|
||||
Continuous mode is not recommended.
|
||||
It is potentially dangerous and may cause your AI to run forever or carry out actions you would not usually authorise.
|
||||
Continuous mode is not recommended.
|
||||
It is potentially dangerous and may cause your AI to run forever or carry out actions you would not usually authorise.
|
||||
Use at your own risk.
|
||||
1. Run the `main.py` Python script in your terminal:
|
||||
```
|
||||
|
@ -210,6 +245,7 @@ If you don't have access to the GPT4 api, this mode will allow you to use Auto-G
|
|||
```
|
||||
python scripts/main.py --gpt3only
|
||||
```
|
||||
It is recommended to use a virtual machine for tasks that require high security measures to prevent any potential harm to the main computer's system and data.
|
||||
|
||||
## 🖼 Image Generation
|
||||
By default, Auto-GPT uses DALL-e for image generation. To use Stable Diffusion, a [HuggingFace API Token](https://huggingface.co/settings/tokens) is required.
|
||||
|
@ -240,7 +276,7 @@ As an autonomous experiment, Auto-GPT may generate content or take actions that
|
|||
|
||||
By using Auto-GPT, you agree to indemnify, defend, and hold harmless the developers, contributors, and any affiliated parties from and against any and all claims, damages, losses, liabilities, costs, and expenses (including reasonable attorneys' fees) arising from your use of this software or your violation of these terms.
|
||||
|
||||
## 🐦 Connect with Us on Twitter
|
||||
## 🐦 Connect with Us on Twitter
|
||||
|
||||
Stay up-to-date with the latest news, updates, and insights about Auto-GPT by following our Twitter accounts. Engage with the developer and the AI's own account for interesting discussions, project updates, and more.
|
||||
|
||||
|
|
|
@ -28,15 +28,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -50,7 +50,7 @@ Gmail: entrepreneurgpt@gmail.com
|
|||
Twitter: @En_GPT
|
||||
"""
|
||||
-----------------------------------------------------------------------
|
||||
Entrepreneur-GTP:
|
||||
Entrepreneur-GTP:
|
||||
{
|
||||
"command":
|
||||
{
|
||||
|
@ -69,7 +69,7 @@ Entrepreneur-GTP:
|
|||
}
|
||||
}
|
||||
-----------------------------------------------------------------------
|
||||
USER:
|
||||
USER:
|
||||
RESULT:
|
||||
"""
|
||||
29 best online business ideas
|
||||
|
@ -117,7 +117,7 @@ https://www.visitor-analytics.io › blog › best-online-b...
|
|||
26/10/2022 — 10 Best Online Business Ideas for 2023 · 1. Artificial Intelligence · 2. Digital Products · 3. Blogging · 4. Graphic Design · 5. Web Development · 6.
|
||||
"""
|
||||
-----------------------------------------------------------------------
|
||||
Entrepreneur-GTP:
|
||||
Entrepreneur-GTP:
|
||||
{
|
||||
"command":
|
||||
{
|
||||
|
@ -167,15 +167,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -193,7 +193,7 @@ Online business ideas: 1. Clothing line, 2. Dropshipping, 3. Sell art, 4. Freela
|
|||
"""
|
||||
"""
|
||||
-----------------------------------------------------------------------
|
||||
Entrepreneur-GTP:
|
||||
Entrepreneur-GTP:
|
||||
{
|
||||
"command":
|
||||
{
|
||||
|
@ -282,15 +282,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -334,7 +334,7 @@ Entrepreneur-GTP:
|
|||
-----------------------------------------------------------------------
|
||||
USER:
|
||||
"""
|
||||
Top Result:
|
||||
Top Result:
|
||||
"""
|
||||
Low-Cost Business Ideas:
|
||||
Mobile Food Shop: Mobile Food Shop is the top small business idea as people all over the world love to eat tasty and healthy food. ...
|
||||
|
@ -403,15 +403,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
|
|
@ -31,15 +31,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -143,15 +143,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -222,15 +222,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -373,15 +373,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -458,15 +458,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -515,10 +515,10 @@ Entrepreneur-GTP:
|
|||
}
|
||||
"""
|
||||
-----------------------------------------------------------------------
|
||||
Developer NOTE: I have interviened here to reccomend an alternative platform, since I know substack will make the process far more painless for me.
|
||||
Developer NOTE: I have interviened here to reccomend an alternative platform, since I know substack will make the process far more painless for me.
|
||||
USER:
|
||||
"""
|
||||
Recommendation:
|
||||
Recommendation:
|
||||
""" Use https://substack.com instead of WordPress for simplicity. """
|
||||
"""
|
||||
-----------------------------------------------------------------------
|
||||
|
@ -670,15 +670,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -758,15 +758,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -917,15 +917,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -1080,15 +1080,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -1210,10 +1210,10 @@ Quora
|
|||
https://www.quora.com › How-do-you-promote-a-new-fi...
|
||||
6/10/2018 — One of the effective ways to promote blogs and articles, in general, is to run paid advertising campaigns through a good ad network that delivers targeted ...
|
||||
2 answers
|
||||
|
||||
|
||||
·
|
||||
|
||||
3 votes:
|
||||
|
||||
3 votes:
|
||||
Promoting your new blog may be difficult if you’re a newbie. But trust me, you’d ...
|
||||
How to start a personal finance blog when I have no ...
|
||||
3 answers
|
||||
|
@ -1331,15 +1331,15 @@ These are the commands available from you:
|
|||
|
||||
Your response must ALWAYS be in JSON format, in the following format:
|
||||
{
|
||||
"command":
|
||||
"command":
|
||||
{
|
||||
"name": "command name",
|
||||
"arguments":
|
||||
"arguments":
|
||||
{
|
||||
"argument name": "argument value"
|
||||
}
|
||||
},
|
||||
"Thoughts":
|
||||
},
|
||||
"Thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
|
@ -1486,4 +1486,4 @@ USER:
|
|||
Entrepreneur-GTP:
|
||||
"""
|
||||
|
||||
"""
|
||||
"""
|
||||
|
|
|
@ -134,7 +134,7 @@ Entrepreneur-GTP:
|
|||
-----------------------------------------------------------------------
|
||||
USER:
|
||||
"""
|
||||
Summary:
|
||||
Summary:
|
||||
"""
|
||||
The article discusses 18 profitable online business ideas, including starting an e-commerce store, providing virtual assistant services, becoming an affiliate marketer, offering online training or education, and creating mobile applications. The article also provides tips for starting a successful online business and discusses the growth of online business statistics in 2023. Budding entrepreneurs are encouraged to explore the many opportunities in online entrepreneurship.
|
||||
"""
|
||||
|
@ -396,7 +396,7 @@ LONG TERM MEMORY:
|
|||
[0] : """18 profitable online business ideas: e-commerce store, virtual assistant services, affiliate marketing, online training or education, mobile applications""",
|
||||
[1] : """
|
||||
Chosen business idea: Blogging with affiliate marketing
|
||||
"""
|
||||
"""
|
||||
}
|
||||
"""
|
||||
-----------------------------------------------------------------------
|
||||
|
@ -564,7 +564,7 @@ LONG TERM MEMORY:
|
|||
[0] : """18 profitable online business ideas: e-commerce store, virtual assistant services, affiliate marketing, online training or education, mobile applications""",
|
||||
[1] : """
|
||||
Chosen business idea: Blogging with affiliate marketing
|
||||
"""
|
||||
"""
|
||||
[2] : """
|
||||
Blogging with affiliate marketing strategy: 1. Choose a niche, 2. Domain and hosting, 3. Design your blog, 4. Create valuable content, 5. SEO optimization, 6. Build an email list, 7. Join affiliate programs, 8. Integrate affiliate links, 9. Promote your blog, 10. Analyze and adjust
|
||||
"""
|
||||
|
@ -654,7 +654,7 @@ LONG TERM MEMORY:
|
|||
[0] : """18 profitable online business ideas: e-commerce store, virtual assistant services, affiliate marketing, online training or education, mobile applications""",
|
||||
[1] : """
|
||||
Chosen business idea: Blogging with affiliate marketing
|
||||
"""
|
||||
"""
|
||||
[2] : """
|
||||
Blogging with affiliate marketing strategy: 1. Choose a niche, 2. Domain and hosting, 3. Design your blog, 4. Create valuable content, 5. SEO optimization, 6. Build an email list, 7. Join affiliate programs, 8. Integrate affiliate links, 9. Promote your blog, 10. Analyze and adjust
|
||||
"""
|
||||
|
@ -792,7 +792,7 @@ LONG TERM MEMORY:
|
|||
[0] : """18 profitable online business ideas: e-commerce store, virtual assistant services, affiliate marketing, online training or education, mobile applications""",
|
||||
[1] : """
|
||||
Chosen business idea: Blogging with affiliate marketing
|
||||
"""
|
||||
"""
|
||||
[2] : """
|
||||
Blogging with affiliate marketing strategy: 1. Choose a niche, 2. Domain and hosting, 3. Design your blog, 4. Create valuable content, 5. SEO optimization, 6. Build an email list, 7. Join affiliate programs, 8. Integrate affiliate links, 9. Promote your blog, 10. Analyze and adjust
|
||||
"""
|
||||
|
@ -901,7 +901,7 @@ LONG TERM MEMORY:
|
|||
[0] : """18 profitable online business ideas: e-commerce store, virtual assistant services, affiliate marketing, online training or education, mobile applications""",
|
||||
[1] : """
|
||||
Chosen business idea: Blogging with affiliate marketing
|
||||
"""
|
||||
"""
|
||||
[2] : """
|
||||
Blogging with affiliate marketing strategy: 1. Choose a niche, 2. Domain and hosting, 3. Design your blog, 4. Create valuable content, 5. SEO optimization, 6. Build an email list, 7. Join affiliate programs, 8. Integrate affiliate links, 9. Promote your blog, 10. Analyze and adjust
|
||||
"""
|
||||
|
|
|
@ -12,4 +12,7 @@ docker
|
|||
duckduckgo-search
|
||||
google-api-python-client #(https://developers.google.com/custom-search/v1/overview)
|
||||
pinecone-client==2.2.1
|
||||
redis
|
||||
orjson
|
||||
Pillow
|
||||
weaviate-client==3.15.4
|
||||
|
|
|
@ -7,6 +7,7 @@ agents = {} # key, (task, full_message_history, model)
|
|||
# TODO: Centralise use of create_chat_completion() to globally enforce token limit
|
||||
|
||||
def create_agent(task, prompt, model):
|
||||
"""Create a new agent and return its key"""
|
||||
global next_key
|
||||
global agents
|
||||
|
||||
|
@ -32,6 +33,7 @@ def create_agent(task, prompt, model):
|
|||
|
||||
|
||||
def message_agent(key, message):
|
||||
"""Send a message to an agent and return its response"""
|
||||
global agents
|
||||
|
||||
task, messages, model = agents[int(key)]
|
||||
|
@ -52,6 +54,7 @@ def message_agent(key, message):
|
|||
|
||||
|
||||
def list_agents():
|
||||
"""Return a list of all agents"""
|
||||
global agents
|
||||
|
||||
# Return a list of agent keys and their tasks
|
||||
|
@ -59,6 +62,7 @@ def list_agents():
|
|||
|
||||
|
||||
def delete_agent(key):
|
||||
"""Delete an agent and return True if successful, False otherwise"""
|
||||
global agents
|
||||
|
||||
try:
|
||||
|
|
|
@ -3,7 +3,27 @@ import data
|
|||
import os
|
||||
|
||||
class AIConfig:
|
||||
def __init__(self, ai_name="", ai_role="", ai_goals=[]):
|
||||
"""
|
||||
A class object that contains the configuration information for the AI
|
||||
|
||||
Attributes:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
"""
|
||||
|
||||
def __init__(self, ai_name: str="", ai_role: str="", ai_goals: list=[]) -> None:
|
||||
"""
|
||||
Initialize a class instance
|
||||
|
||||
Parameters:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
self.ai_name = ai_name
|
||||
self.ai_role = ai_role
|
||||
self.ai_goals = ai_goals
|
||||
|
@ -12,8 +32,19 @@ class AIConfig:
|
|||
SAVE_FILE = os.path.join(os.path.dirname(__file__), '..', 'ai_settings.yaml')
|
||||
|
||||
@classmethod
|
||||
def load(cls, config_file=SAVE_FILE):
|
||||
# Load variables from yaml file if it exists
|
||||
def load(cls: object, config_file: str=SAVE_FILE) -> object:
|
||||
"""
|
||||
Returns class object with parameters (ai_name, ai_role, ai_goals) loaded from yaml file if yaml file exists,
|
||||
else returns class with no parameters.
|
||||
|
||||
Parameters:
|
||||
cls (class object): An AIConfig Class object.
|
||||
config_file (int): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
|
||||
|
||||
Returns:
|
||||
cls (object): A instance of given cls object
|
||||
"""
|
||||
|
||||
try:
|
||||
with open(config_file) as file:
|
||||
config_params = yaml.load(file, Loader=yaml.FullLoader)
|
||||
|
@ -26,12 +57,32 @@ class AIConfig:
|
|||
|
||||
return cls(ai_name, ai_role, ai_goals)
|
||||
|
||||
def save(self, config_file=SAVE_FILE):
|
||||
def save(self, config_file: str=SAVE_FILE) -> None:
|
||||
"""
|
||||
Saves the class parameters to the specified file yaml file path as a yaml file.
|
||||
|
||||
Parameters:
|
||||
config_file(str): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
config = {"ai_name": self.ai_name, "ai_role": self.ai_role, "ai_goals": self.ai_goals}
|
||||
with open(config_file, "w") as file:
|
||||
yaml.dump(config, file)
|
||||
|
||||
def construct_full_prompt(self):
|
||||
def construct_full_prompt(self) -> str:
|
||||
"""
|
||||
Returns a prompt to the user with the class information in an organized fashion.
|
||||
|
||||
Parameters:
|
||||
None
|
||||
|
||||
Returns:
|
||||
full_prompt (str): A string containing the intitial prompt for the user including the ai_name, ai_role and ai_goals.
|
||||
"""
|
||||
|
||||
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
|
||||
|
||||
# Construct full prompt
|
||||
|
@ -41,3 +92,4 @@ class AIConfig:
|
|||
|
||||
full_prompt += f"\n\n{data.load_prompt()}"
|
||||
return full_prompt
|
||||
|
||||
|
|
|
@ -5,21 +5,37 @@ from call_ai_function import call_ai_function
|
|||
from json_parser import fix_and_parse_json
|
||||
cfg = Config()
|
||||
|
||||
# Evaluating code
|
||||
|
||||
def evaluate_code(code: str) -> List[str]:
|
||||
"""
|
||||
A function that takes in a string and returns a response from create chat completion api call.
|
||||
|
||||
Parameters:
|
||||
code (str): Code to be evaluated.
|
||||
Returns:
|
||||
A result string from create chat completion. A list of suggestions to improve the code.
|
||||
"""
|
||||
|
||||
function_string = "def analyze_code(code: str) -> List[str]:"
|
||||
args = [code]
|
||||
description_string = """Analyzes the given code and returns a list of suggestions for improvements."""
|
||||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
|
||||
|
||||
return result_string
|
||||
|
||||
|
||||
# Improving code
|
||||
|
||||
def improve_code(suggestions: List[str], code: str) -> str:
|
||||
"""
|
||||
A function that takes in code and suggestions and returns a response from create chat completion api call.
|
||||
|
||||
Parameters:
|
||||
suggestions (List): A list of suggestions around what needs to be improved.
|
||||
code (str): Code to be improved.
|
||||
Returns:
|
||||
A result string from create chat completion. Improved code in response.
|
||||
"""
|
||||
|
||||
function_string = (
|
||||
"def generate_improved_code(suggestions: List[str], code: str) -> str:"
|
||||
)
|
||||
|
@ -30,10 +46,18 @@ def improve_code(suggestions: List[str], code: str) -> str:
|
|||
return result_string
|
||||
|
||||
|
||||
# Writing tests
|
||||
|
||||
|
||||
def write_tests(code: str, focus: List[str]) -> str:
|
||||
"""
|
||||
A function that takes in code and focus topics and returns a response from create chat completion api call.
|
||||
|
||||
Parameters:
|
||||
focus (List): A list of suggestions around what needs to be improved.
|
||||
code (str): Code for test cases to be generated against.
|
||||
Returns:
|
||||
A result string from create chat completion. Test cases for the submitted code in response.
|
||||
"""
|
||||
|
||||
function_string = (
|
||||
"def create_test_cases(code: str, focus: Optional[str] = None) -> str:"
|
||||
)
|
||||
|
@ -42,5 +66,3 @@ def write_tests(code: str, focus: List[str]) -> str:
|
|||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
return result_string
|
||||
|
||||
|
||||
|
|
|
@ -5,8 +5,25 @@ from llm_utils import create_chat_completion
|
|||
|
||||
cfg = Config()
|
||||
|
||||
# Define and check for local file address prefixes
|
||||
def check_local_file_access(url):
|
||||
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
|
||||
return any(url.startswith(prefix) for prefix in local_prefixes)
|
||||
|
||||
def scrape_text(url):
|
||||
response = requests.get(url, headers=cfg.user_agent_header)
|
||||
"""Scrape text from a webpage"""
|
||||
# Most basic check if the URL is valid:
|
||||
if not url.startswith('http'):
|
||||
return "Error: Invalid URL"
|
||||
|
||||
# Restrict access to local files
|
||||
if check_local_file_access(url):
|
||||
return "Error: Access to local files is restricted"
|
||||
|
||||
try:
|
||||
response = requests.get(url, headers=cfg.user_agent_header)
|
||||
except requests.exceptions.RequestException as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
|
@ -26,6 +43,7 @@ def scrape_text(url):
|
|||
|
||||
|
||||
def extract_hyperlinks(soup):
|
||||
"""Extract hyperlinks from a BeautifulSoup object"""
|
||||
hyperlinks = []
|
||||
for link in soup.find_all('a', href=True):
|
||||
hyperlinks.append((link.text, link['href']))
|
||||
|
@ -33,6 +51,7 @@ def extract_hyperlinks(soup):
|
|||
|
||||
|
||||
def format_hyperlinks(hyperlinks):
|
||||
"""Format hyperlinks into a list of strings"""
|
||||
formatted_links = []
|
||||
for link_text, link_url in hyperlinks:
|
||||
formatted_links.append(f"{link_text} ({link_url})")
|
||||
|
@ -40,6 +59,7 @@ def format_hyperlinks(hyperlinks):
|
|||
|
||||
|
||||
def scrape_links(url):
|
||||
"""Scrape links from a webpage"""
|
||||
response = requests.get(url, headers=cfg.user_agent_header)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
|
@ -57,6 +77,7 @@ def scrape_links(url):
|
|||
|
||||
|
||||
def split_text(text, max_length=8192):
|
||||
"""Split text into chunks of a maximum length"""
|
||||
paragraphs = text.split("\n")
|
||||
current_length = 0
|
||||
current_chunk = []
|
||||
|
@ -75,12 +96,14 @@ def split_text(text, max_length=8192):
|
|||
|
||||
|
||||
def create_message(chunk, question):
|
||||
"""Create a message for the user to summarize a chunk of text"""
|
||||
return {
|
||||
"role": "user",
|
||||
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
|
||||
}
|
||||
|
||||
def summarize_text(text, question):
|
||||
"""Summarize text using the LLM model"""
|
||||
if not text:
|
||||
return "Error: No text to summarize"
|
||||
|
||||
|
@ -112,4 +135,4 @@ def summarize_text(text, question):
|
|||
max_tokens=300,
|
||||
)
|
||||
|
||||
return final_summary
|
||||
return final_summary
|
||||
|
|
|
@ -1,11 +1,14 @@
|
|||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
# This is a magic function that can do anything with no-code. See
|
||||
# https://github.com/Torantulino/AI-Functions for more info.
|
||||
def call_ai_function(function, args, description, model=cfg.smart_llm_model):
|
||||
def call_ai_function(function, args, description, model=None):
|
||||
"""Call an AI function"""
|
||||
if model is None:
|
||||
model = cfg.smart_llm_model
|
||||
# For each arg, if any are None, convert to "None":
|
||||
args = [str(arg) if arg is not None else "None" for arg in args]
|
||||
# parse args to comma seperated string
|
||||
|
|
|
@ -3,11 +3,9 @@ import openai
|
|||
from dotenv import load_dotenv
|
||||
from config import Config
|
||||
import token_counter
|
||||
|
||||
cfg = Config()
|
||||
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
cfg = Config()
|
||||
|
||||
def create_chat_message(role, content):
|
||||
"""
|
||||
|
@ -26,8 +24,11 @@ def create_chat_message(role, content):
|
|||
def generate_context(prompt, relevant_memory, full_message_history, model):
|
||||
current_context = [
|
||||
create_chat_message(
|
||||
"system", prompt), create_chat_message(
|
||||
"system", f"Permanent memory: {relevant_memory}")]
|
||||
"system", prompt),
|
||||
create_chat_message(
|
||||
"system", f"The current time and date is {time.strftime('%c')}"),
|
||||
create_chat_message(
|
||||
"system", f"This reminds you of these events from your past:\n{relevant_memory}\n\n")]
|
||||
|
||||
# Add messages from the full message history until we reach the token limit
|
||||
next_message_to_add_index = len(full_message_history) - 1
|
||||
|
@ -43,8 +44,8 @@ def chat_with_ai(
|
|||
user_input,
|
||||
full_message_history,
|
||||
permanent_memory,
|
||||
token_limit,
|
||||
debug=False):
|
||||
token_limit):
|
||||
"""Interact with the OpenAI API, sending the prompt, user input, message history, and permanent memory."""
|
||||
while True:
|
||||
try:
|
||||
"""
|
||||
|
@ -62,13 +63,15 @@ def chat_with_ai(
|
|||
"""
|
||||
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument
|
||||
# Reserve 1000 tokens for the response
|
||||
if debug:
|
||||
|
||||
if cfg.debug:
|
||||
print(f"Token limit: {token_limit}")
|
||||
|
||||
send_token_limit = token_limit - 1000
|
||||
|
||||
relevant_memory = permanent_memory.get_relevant(str(full_message_history[-5:]), 10)
|
||||
|
||||
if debug:
|
||||
if cfg.debug:
|
||||
print('Memory Stats: ', permanent_memory.get_stats())
|
||||
|
||||
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
|
||||
|
@ -95,7 +98,7 @@ def chat_with_ai(
|
|||
|
||||
# Count the currently used tokens
|
||||
current_tokens_used += tokens_to_add
|
||||
|
||||
|
||||
# Move to the next most recent message in the full message history
|
||||
next_message_to_add_index -= 1
|
||||
|
||||
|
@ -107,7 +110,7 @@ def chat_with_ai(
|
|||
# assert tokens_remaining >= 0, "Tokens remaining is negative. This should never happen, please submit a bug report at https://www.github.com/Torantulino/Auto-GPT"
|
||||
|
||||
# Debug print the current context
|
||||
if debug:
|
||||
if cfg.debug:
|
||||
print(f"Token limit: {token_limit}")
|
||||
print(f"Send Token Count: {current_tokens_used}")
|
||||
print(f"Tokens remaining for response: {tokens_remaining}")
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import browse
|
||||
import json
|
||||
from factory import MemoryFactory
|
||||
from memory import get_memory
|
||||
import datetime
|
||||
import agent_manager as agents
|
||||
import speak
|
||||
|
@ -25,25 +25,23 @@ def is_valid_int(value):
|
|||
return False
|
||||
|
||||
def get_command(response):
|
||||
"""Parse the response and return the command name and arguments"""
|
||||
try:
|
||||
response_json = fix_and_parse_json(response)
|
||||
|
||||
|
||||
if "command" not in response_json:
|
||||
return "Error:" , "Missing 'command' object in JSON"
|
||||
|
||||
|
||||
command = response_json["command"]
|
||||
|
||||
if "name" not in command:
|
||||
return "Error:", "Missing 'name' field in 'command' object"
|
||||
|
||||
|
||||
command_name = command["name"]
|
||||
|
||||
# Use an empty dictionary if 'args' field is not present in 'command' object
|
||||
arguments = command.get("args", {})
|
||||
|
||||
if not arguments:
|
||||
arguments = {}
|
||||
|
||||
return command_name, arguments
|
||||
except json.decoder.JSONDecodeError:
|
||||
return "Error:", "Invalid JSON"
|
||||
|
@ -53,10 +51,12 @@ def get_command(response):
|
|||
|
||||
|
||||
def execute_command(command_name, arguments):
|
||||
memory = MemoryFactory.get_memory(cfg.memory_provider)
|
||||
"""Execute the command and return the result"""
|
||||
memory = get_memory(cfg)
|
||||
|
||||
try:
|
||||
if command_name == "google":
|
||||
|
||||
|
||||
# Check if the Google API key is set and use the official search method
|
||||
# If the API key is not set or has only whitespaces, use the unofficial search method
|
||||
if cfg.google_api_key and (cfg.google_api_key.strip() if cfg.google_api_key else None):
|
||||
|
@ -105,21 +105,25 @@ def execute_command(command_name, arguments):
|
|||
return execute_python_file(arguments["file"])
|
||||
elif command_name == "generate_image":
|
||||
return generate_image(arguments["prompt"])
|
||||
elif command_name == "do_nothing":
|
||||
return "No action performed."
|
||||
elif command_name == "task_complete":
|
||||
shutdown()
|
||||
else:
|
||||
return f"Unknown command {command_name}"
|
||||
return f"Unknown command '{command_name}'. Please refer to the 'COMMANDS' list for availabe commands and only respond in the specified JSON format."
|
||||
# All errors, return "Error: + error message"
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def get_datetime():
|
||||
"""Return the current date and time"""
|
||||
return "Current date and time: " + \
|
||||
datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
|
||||
def google_search(query, num_results=8):
|
||||
"""Return the results of a google search"""
|
||||
search_results = []
|
||||
for j in ddg(query, max_results=num_results):
|
||||
search_results.append(j)
|
||||
|
@ -127,6 +131,7 @@ def google_search(query, num_results=8):
|
|||
return json.dumps(search_results, ensure_ascii=False, indent=4)
|
||||
|
||||
def google_official_search(query, num_results=8):
|
||||
"""Return the results of a google search using the official Google API"""
|
||||
from googleapiclient.discovery import build
|
||||
from googleapiclient.errors import HttpError
|
||||
import json
|
||||
|
@ -138,20 +143,20 @@ def google_official_search(query, num_results=8):
|
|||
|
||||
# Initialize the Custom Search API service
|
||||
service = build("customsearch", "v1", developerKey=api_key)
|
||||
|
||||
|
||||
# Send the search query and retrieve the results
|
||||
result = service.cse().list(q=query, cx=custom_search_engine_id, num=num_results).execute()
|
||||
|
||||
# Extract the search result items from the response
|
||||
search_results = result.get("items", [])
|
||||
|
||||
|
||||
# Create a list of only the URLs from the search results
|
||||
search_results_links = [item["link"] for item in search_results]
|
||||
|
||||
except HttpError as e:
|
||||
# Handle errors in the API call
|
||||
error_details = json.loads(e.content.decode())
|
||||
|
||||
|
||||
# Check if the error is related to an invalid or missing API key
|
||||
if error_details.get("error", {}).get("code") == 403 and "invalid API key" in error_details.get("error", {}).get("message", ""):
|
||||
return "Error: The provided Google API key is invalid or missing."
|
||||
|
@ -162,6 +167,7 @@ def google_official_search(query, num_results=8):
|
|||
return search_results_links
|
||||
|
||||
def browse_website(url, question):
|
||||
"""Browse a website and return the summary and links"""
|
||||
summary = get_text_summary(url, question)
|
||||
links = get_hyperlinks(url)
|
||||
|
||||
|
@ -175,22 +181,72 @@ def browse_website(url, question):
|
|||
|
||||
|
||||
def get_text_summary(url, question):
|
||||
"""Return the results of a google search"""
|
||||
text = browse.scrape_text(url)
|
||||
summary = browse.summarize_text(text, question)
|
||||
return """ "Result" : """ + summary
|
||||
|
||||
|
||||
def get_hyperlinks(url):
|
||||
"""Return the results of a google search"""
|
||||
link_list = browse.scrape_links(url)
|
||||
return link_list
|
||||
|
||||
|
||||
def commit_memory(string):
|
||||
"""Commit a string to memory"""
|
||||
_text = f"""Committing memory with string "{string}" """
|
||||
mem.permanent_memory.append(string)
|
||||
return _text
|
||||
|
||||
|
||||
def delete_memory(key):
|
||||
"""Delete a memory with a given key"""
|
||||
if key >= 0 and key < len(mem.permanent_memory):
|
||||
_text = "Deleting memory with key " + str(key)
|
||||
del mem.permanent_memory[key]
|
||||
print(_text)
|
||||
return _text
|
||||
else:
|
||||
print("Invalid key, cannot delete memory.")
|
||||
return None
|
||||
|
||||
|
||||
def overwrite_memory(key, string):
|
||||
"""Overwrite a memory with a given key and string"""
|
||||
# Check if the key is a valid integer
|
||||
if is_valid_int(key):
|
||||
key_int = int(key)
|
||||
# Check if the integer key is within the range of the permanent_memory list
|
||||
if 0 <= key_int < len(mem.permanent_memory):
|
||||
_text = "Overwriting memory with key " + str(key) + " and string " + string
|
||||
# Overwrite the memory slot with the given integer key and string
|
||||
mem.permanent_memory[key_int] = string
|
||||
print(_text)
|
||||
return _text
|
||||
else:
|
||||
print(f"Invalid key '{key}', out of range.")
|
||||
return None
|
||||
# Check if the key is a valid string
|
||||
elif isinstance(key, str):
|
||||
_text = "Overwriting memory with key " + key + " and string " + string
|
||||
# Overwrite the memory slot with the given string key and string
|
||||
mem.permanent_memory[key] = string
|
||||
print(_text)
|
||||
return _text
|
||||
else:
|
||||
print(f"Invalid key '{key}', must be an integer or a string.")
|
||||
return None
|
||||
|
||||
|
||||
def shutdown():
|
||||
"""Shut down the program"""
|
||||
print("Shutting down...")
|
||||
quit()
|
||||
|
||||
|
||||
def start_agent(name, task, prompt, model=cfg.fast_llm_model):
|
||||
"""Start an agent with a given name, task, and prompt"""
|
||||
global cfg
|
||||
|
||||
# Remove underscores from name
|
||||
|
@ -214,6 +270,7 @@ def start_agent(name, task, prompt, model=cfg.fast_llm_model):
|
|||
|
||||
|
||||
def message_agent(key, message):
|
||||
"""Message an agent with a given key and message"""
|
||||
global cfg
|
||||
|
||||
# Check if the key is a valid integer
|
||||
|
@ -232,10 +289,12 @@ def message_agent(key, message):
|
|||
|
||||
|
||||
def list_agents():
|
||||
"""List all agents"""
|
||||
return agents.list_agents()
|
||||
|
||||
|
||||
def delete_agent(key):
|
||||
"""Delete an agent with a given key"""
|
||||
result = agents.delete_agent(key)
|
||||
if not result:
|
||||
return f"Agent {key} does not exist."
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
import abc
|
||||
import os
|
||||
import openai
|
||||
from dotenv import load_dotenv
|
||||
|
@ -5,7 +6,7 @@ from dotenv import load_dotenv
|
|||
load_dotenv()
|
||||
|
||||
|
||||
class Singleton(type):
|
||||
class Singleton(abc.ABCMeta, type):
|
||||
"""
|
||||
Singleton metaclass for ensuring only one instance of a class.
|
||||
"""
|
||||
|
@ -13,6 +14,7 @@ class Singleton(type):
|
|||
_instances = {}
|
||||
|
||||
def __call__(cls, *args, **kwargs):
|
||||
"""Call method for the singleton metaclass."""
|
||||
if cls not in cls._instances:
|
||||
cls._instances[cls] = super(
|
||||
Singleton, cls).__call__(
|
||||
|
@ -20,37 +22,45 @@ class Singleton(type):
|
|||
return cls._instances[cls]
|
||||
|
||||
|
||||
class AbstractSingleton(abc.ABC, metaclass=Singleton):
|
||||
pass
|
||||
|
||||
|
||||
class Config(metaclass=Singleton):
|
||||
"""
|
||||
Configuration class to store the state of bools for different scripts access.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the Config class"""
|
||||
self.debug = False
|
||||
self.continuous_mode = False
|
||||
self.speak_mode = False
|
||||
# TODO - make these models be self-contained, using langchain, so we can configure them once and call it good
|
||||
self.fast_llm_model = os.getenv("FAST_LLM_MODEL", "gpt-3.5-turbo")
|
||||
|
||||
self.fast_llm_model = os.getenv("FAST_LLM_MODEL", "gpt-3.5-turbo")
|
||||
self.smart_llm_model = os.getenv("SMART_LLM_MODEL", "gpt-4")
|
||||
self.fast_token_limit = int(os.getenv("FAST_TOKEN_LIMIT", 4000))
|
||||
self.smart_token_limit = int(os.getenv("SMART_TOKEN_LIMIT", 8000))
|
||||
|
||||
|
||||
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||
self.use_azure = False
|
||||
self.use_azure = os.getenv("USE_AZURE") == 'True'
|
||||
if self.use_azure:
|
||||
self.openai_api_base = os.getenv("OPENAI_API_BASE")
|
||||
self.openai_api_version = os.getenv("OPENAI_API_VERSION")
|
||||
self.openai_deployment_id = os.getenv("OPENAI_DEPLOYMENT_ID")
|
||||
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE")
|
||||
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION")
|
||||
self.openai_deployment_id = os.getenv("OPENAI_AZURE_DEPLOYMENT_ID")
|
||||
openai.api_type = "azure"
|
||||
openai.api_base = self.openai_api_base
|
||||
openai.api_version = self.openai_api_version
|
||||
|
||||
|
||||
self.elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
|
||||
|
||||
self.use_mac_os_tts = False
|
||||
self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS")
|
||||
|
||||
self.google_api_key = os.getenv("GOOGLE_API_KEY")
|
||||
self.custom_search_engine_id = os.getenv("CUSTOM_SEARCH_ENGINE_ID")
|
||||
|
||||
self.memory_provider = os.getenv("MEMORY_PROVIDER", 'pinecone')
|
||||
self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
||||
self.pinecone_region = os.getenv("PINECONE_ENV")
|
||||
|
||||
|
@ -59,7 +69,6 @@ class Config(metaclass=Singleton):
|
|||
self.weaviate_username = os.getenv("WEAVIATE_USERNAME", None)
|
||||
self.weaviate_password = os.getenv("WEAVIATE_PASSWORD", None)
|
||||
self.weaviate_scopes = os.getenv("WEAVIATE_SCOPES", None)
|
||||
self.weaviate_index = os.getenv("WEAVIATE_INDEX", 'auto-gpt')
|
||||
|
||||
self.image_provider = os.getenv("IMAGE_PROVIDER")
|
||||
self.huggingface_api_token = os.getenv("HUGGINGFACE_API_TOKEN")
|
||||
|
@ -67,42 +76,68 @@ class Config(metaclass=Singleton):
|
|||
# User agent headers to use when browsing web
|
||||
# Some websites might just completely deny request with an error code if no user agent was found.
|
||||
self.user_agent_header = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"}
|
||||
self.redis_host = os.getenv("REDIS_HOST", "localhost")
|
||||
self.redis_port = os.getenv("REDIS_PORT", "6379")
|
||||
self.redis_password = os.getenv("REDIS_PASSWORD", "")
|
||||
self.wipe_redis_on_start = os.getenv("WIPE_REDIS_ON_START", "True") == 'True'
|
||||
self.memory_index = os.getenv("MEMORY_INDEX", 'auto-gpt')
|
||||
# Note that indexes must be created on db 0 in redis, this is not configureable.
|
||||
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", 'local')
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
def set_continuous_mode(self, value: bool):
|
||||
"""Set the continuous mode value."""
|
||||
self.continuous_mode = value
|
||||
|
||||
def set_speak_mode(self, value: bool):
|
||||
"""Set the speak mode value."""
|
||||
self.speak_mode = value
|
||||
|
||||
def set_debug_mode(self, value: bool):
|
||||
self.debug_mode = value
|
||||
|
||||
def set_fast_llm_model(self, value: str):
|
||||
"""Set the fast LLM model value."""
|
||||
self.fast_llm_model = value
|
||||
|
||||
def set_smart_llm_model(self, value: str):
|
||||
"""Set the smart LLM model value."""
|
||||
self.smart_llm_model = value
|
||||
|
||||
def set_fast_token_limit(self, value: int):
|
||||
"""Set the fast token limit value."""
|
||||
self.fast_token_limit = value
|
||||
|
||||
def set_smart_token_limit(self, value: int):
|
||||
"""Set the smart token limit value."""
|
||||
self.smart_token_limit = value
|
||||
|
||||
def set_openai_api_key(self, value: str):
|
||||
"""Set the OpenAI API key value."""
|
||||
self.openai_api_key = value
|
||||
|
||||
|
||||
def set_elevenlabs_api_key(self, value: str):
|
||||
"""Set the ElevenLabs API key value."""
|
||||
self.elevenlabs_api_key = value
|
||||
|
||||
|
||||
def set_google_api_key(self, value: str):
|
||||
"""Set the Google API key value."""
|
||||
self.google_api_key = value
|
||||
|
||||
|
||||
def set_custom_search_engine_id(self, value: str):
|
||||
"""Set the custom search engine id value."""
|
||||
self.custom_search_engine_id = value
|
||||
|
||||
def set_pinecone_api_key(self, value: str):
|
||||
"""Set the Pinecone API key value."""
|
||||
self.pinecone_api_key = value
|
||||
|
||||
def set_pinecone_region(self, value: str):
|
||||
"""Set the Pinecone region value."""
|
||||
self.pinecone_region = value
|
||||
|
||||
def set_debug_mode(self, value: bool):
|
||||
"""Set the debug mode value."""
|
||||
self.debug = value
|
||||
|
|
|
@ -2,11 +2,12 @@ import os
|
|||
from pathlib import Path
|
||||
|
||||
def load_prompt():
|
||||
"""Load the prompt from data/prompt.txt"""
|
||||
try:
|
||||
# get directory of this file:
|
||||
file_dir = Path(__file__).parent
|
||||
prompt_file_path = file_dir / "data" / "prompt.txt"
|
||||
|
||||
|
||||
# Load the prompt from data/prompt.txt
|
||||
with open(prompt_file_path, "r") as prompt_file:
|
||||
prompt = prompt_file.read()
|
||||
|
|
|
@ -18,12 +18,13 @@ COMMANDS:
|
|||
12. Append to file: "append_to_file", args: "file": "<file>", "text": "<text>"
|
||||
13. Delete file: "delete_file", args: "file": "<file>"
|
||||
14. Search Files: "search_files", args: "directory": "<directory>"
|
||||
15. Evaluate Code: "evaluate_code", args: "code": "<full _code_string>"
|
||||
15. Evaluate Code: "evaluate_code", args: "code": "<full_code_string>"
|
||||
16. Get Improved Code: "improve_code", args: "suggestions": "<list_of_suggestions>", "code": "<full_code_string>"
|
||||
17. Write Tests: "write_tests", args: "code": "<full_code_string>", "focus": "<list_of_focus_areas>"
|
||||
18. Execute Python File: "execute_python_file", args: "file": "<file>"
|
||||
19. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
|
||||
20. Generate Image: "generate_image", args: "prompt": "<prompt>"
|
||||
21. Do Nothing: "do_nothing", args: ""
|
||||
|
||||
RESOURCES:
|
||||
|
||||
|
@ -34,7 +35,7 @@ RESOURCES:
|
|||
|
||||
PERFORMANCE EVALUATION:
|
||||
|
||||
1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.
|
||||
1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.
|
||||
2. Constructively self-criticize your big-picture behavior constantly.
|
||||
3. Reflect on past decisions and strategies to refine your approach.
|
||||
4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.
|
||||
|
|
|
@ -3,6 +3,7 @@ import os
|
|||
|
||||
|
||||
def execute_python_file(file):
|
||||
"""Execute a Python file in a Docker container and return the output"""
|
||||
workspace_folder = "auto_gpt_workspace"
|
||||
|
||||
print (f"Executing file '{file}' in workspace '{workspace_folder}'")
|
||||
|
@ -39,7 +40,7 @@ def execute_python_file(file):
|
|||
container.remove()
|
||||
|
||||
# print(f"Execution complete. Output: {output}")
|
||||
# print(f"Logs: {logs}")
|
||||
# print(f"Logs: {logs}")
|
||||
|
||||
return logs
|
||||
|
||||
|
|
|
@ -1,13 +0,0 @@
|
|||
from providers.pinecone import PineconeMemory
|
||||
from providers.weaviate import WeaviateMemory
|
||||
|
||||
class MemoryFactory:
|
||||
@staticmethod
|
||||
def get_memory(mem_type):
|
||||
if mem_type == 'pinecone':
|
||||
return PineconeMemory()
|
||||
|
||||
if mem_type == 'weaviate':
|
||||
return WeaviateMemory()
|
||||
|
||||
raise ValueError('Unknown memory provider')
|
|
@ -4,11 +4,13 @@ import os.path
|
|||
# Set a dedicated folder for file I/O
|
||||
working_directory = "auto_gpt_workspace"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
if not os.path.exists(working_directory):
|
||||
os.makedirs(working_directory)
|
||||
|
||||
|
||||
def safe_join(base, *paths):
|
||||
"""Join one or more path components intelligently."""
|
||||
new_path = os.path.join(base, *paths)
|
||||
norm_new_path = os.path.normpath(new_path)
|
||||
|
||||
|
@ -19,9 +21,10 @@ def safe_join(base, *paths):
|
|||
|
||||
|
||||
def read_file(filename):
|
||||
"""Read a file and return the contents"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
with open(filepath, "r") as f:
|
||||
with open(filepath, "r", encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
return content
|
||||
except Exception as e:
|
||||
|
@ -29,6 +32,7 @@ def read_file(filename):
|
|||
|
||||
|
||||
def write_to_file(filename, text):
|
||||
"""Write text to a file"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
directory = os.path.dirname(filepath)
|
||||
|
@ -42,6 +46,7 @@ def write_to_file(filename, text):
|
|||
|
||||
|
||||
def append_to_file(filename, text):
|
||||
"""Append text to a file"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
with open(filepath, "a") as f:
|
||||
|
@ -52,6 +57,7 @@ def append_to_file(filename, text):
|
|||
|
||||
|
||||
def delete_file(filename):
|
||||
"""Delete a file"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
os.remove(filepath)
|
||||
|
|
|
@ -14,7 +14,7 @@ working_directory = "auto_gpt_workspace"
|
|||
def generate_image(prompt):
|
||||
|
||||
filename = str(uuid.uuid4()) + ".jpg"
|
||||
|
||||
|
||||
# DALL-E
|
||||
if cfg.image_provider == 'dalle':
|
||||
|
||||
|
@ -54,4 +54,4 @@ def generate_image(prompt):
|
|||
return "Saved to disk:" + filename
|
||||
|
||||
else:
|
||||
return "No Image Provider Set"
|
||||
return "No Image Provider Set"
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
import json
|
||||
from typing import Any, Dict, Union
|
||||
from call_ai_function import call_ai_function
|
||||
from config import Config
|
||||
from json_utils import correct_json
|
||||
|
||||
cfg = Config()
|
||||
|
||||
def fix_and_parse_json(json_str: str, try_to_fix_with_gpt: bool = True):
|
||||
json_schema = """
|
||||
{
|
||||
JSON_SCHEMA = """
|
||||
{
|
||||
"command": {
|
||||
"name": "command name",
|
||||
"args":{
|
||||
|
@ -20,59 +22,88 @@ def fix_and_parse_json(json_str: str, try_to_fix_with_gpt: bool = True):
|
|||
"criticism": "constructive self-criticism",
|
||||
"speak": "thoughts summary to say to user"
|
||||
}
|
||||
}
|
||||
"""
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def fix_and_parse_json(
|
||||
json_str: str,
|
||||
try_to_fix_with_gpt: bool = True
|
||||
) -> Union[str, Dict[Any, Any]]:
|
||||
"""Fix and parse JSON string"""
|
||||
try:
|
||||
json_str = json_str.replace('\t', '')
|
||||
return json.loads(json_str)
|
||||
except Exception as e:
|
||||
# Let's do something manually - sometimes GPT responds with something BEFORE the braces:
|
||||
# "I'm sorry, I don't understand. Please try again."{"text": "I'm sorry, I don't understand. Please try again.", "confidence": 0.0}
|
||||
# So let's try to find the first brace and then parse the rest of the string
|
||||
except json.JSONDecodeError as _: # noqa: F841
|
||||
json_str = correct_json(json_str)
|
||||
try:
|
||||
brace_index = json_str.index("{")
|
||||
json_str = json_str[brace_index:]
|
||||
last_brace_index = json_str.rindex("}")
|
||||
json_str = json_str[:last_brace_index+1]
|
||||
return json.loads(json_str)
|
||||
except Exception as e:
|
||||
if try_to_fix_with_gpt:
|
||||
print(f"Warning: Failed to parse AI output, attempting to fix.\n If you see this warning frequently, it's likely that your prompt is confusing the AI. Try changing it up slightly.")
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as _: # noqa: F841
|
||||
pass
|
||||
# Let's do something manually:
|
||||
# sometimes GPT responds with something BEFORE the braces:
|
||||
# "I'm sorry, I don't understand. Please try again."
|
||||
# {"text": "I'm sorry, I don't understand. Please try again.",
|
||||
# "confidence": 0.0}
|
||||
# So let's try to find the first brace and then parse the rest
|
||||
# of the string
|
||||
try:
|
||||
brace_index = json_str.index("{")
|
||||
json_str = json_str[brace_index:]
|
||||
last_brace_index = json_str.rindex("}")
|
||||
json_str = json_str[:last_brace_index+1]
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as e: # noqa: F841
|
||||
if try_to_fix_with_gpt:
|
||||
print("Warning: Failed to parse AI output, attempting to fix."
|
||||
"\n If you see this warning frequently, it's likely that"
|
||||
" your prompt is confusing the AI. Try changing it up"
|
||||
" slightly.")
|
||||
# Now try to fix this up using the ai_functions
|
||||
ai_fixed_json = fix_json(json_str, json_schema, False)
|
||||
ai_fixed_json = fix_json(json_str, JSON_SCHEMA)
|
||||
|
||||
if ai_fixed_json != "failed":
|
||||
return json.loads(ai_fixed_json)
|
||||
return json.loads(ai_fixed_json)
|
||||
else:
|
||||
print(f"Failed to fix ai output, telling the AI.") # This allows the AI to react to the error message, which usually results in it correcting its ways.
|
||||
return json_str
|
||||
else:
|
||||
# This allows the AI to react to the error message,
|
||||
# which usually results in it correcting its ways.
|
||||
print("Failed to fix ai output, telling the AI.")
|
||||
return json_str
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
def fix_json(json_str: str, schema: str, debug=False) -> str:
|
||||
def fix_json(json_str: str, schema: str) -> str:
|
||||
"""Fix the given JSON string to make it parseable and fully complient with the provided schema."""
|
||||
|
||||
# Try to fix the JSON using gpt:
|
||||
function_string = "def fix_json(json_str: str, schema:str=None) -> str:"
|
||||
args = [f"'''{json_str}'''", f"'''{schema}'''"]
|
||||
description_string = """Fixes the provided JSON string to make it parseable and fully complient with the provided schema.\n If an object or field specifed in the schema isn't contained within the correct JSON, it is ommited.\n This function is brilliant at guessing when the format is incorrect."""
|
||||
description_string = "Fixes the provided JSON string to make it parseable"\
|
||||
" and fully complient with the provided schema.\n If an object or"\
|
||||
" field specified in the schema isn't contained within the correct"\
|
||||
" JSON, it is ommited.\n This function is brilliant at guessing"\
|
||||
" when the format is incorrect."
|
||||
|
||||
# If it doesn't already start with a "`", add one:
|
||||
if not json_str.startswith("`"):
|
||||
json_str = "```json\n" + json_str + "\n```"
|
||||
json_str = "```json\n" + json_str + "\n```"
|
||||
result_string = call_ai_function(
|
||||
function_string, args, description_string, model=cfg.fast_llm_model
|
||||
)
|
||||
if debug:
|
||||
if cfg.debug:
|
||||
print("------------ JSON FIX ATTEMPT ---------------")
|
||||
print(f"Original JSON: {json_str}")
|
||||
print("-----------")
|
||||
print(f"Fixed JSON: {result_string}")
|
||||
print("----------- END OF FIX ATTEMPT ----------------")
|
||||
|
||||
try:
|
||||
json.loads(result_string) # just check the validity
|
||||
json.loads(result_string) # just check the validity
|
||||
return result_string
|
||||
except:
|
||||
except: # noqa: E722
|
||||
# Get the call stack:
|
||||
# import traceback
|
||||
# call_stack = traceback.format_exc()
|
||||
# print(f"Failed to fix JSON: '{json_str}' "+call_stack)
|
||||
return "failed"
|
||||
return "failed"
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
import re
|
||||
import json
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def extract_char_position(error_message: str) -> int:
|
||||
"""Extract the character position from the JSONDecodeError message.
|
||||
|
||||
Args:
|
||||
error_message (str): The error message from the JSONDecodeError
|
||||
exception.
|
||||
|
||||
Returns:
|
||||
int: The character position.
|
||||
"""
|
||||
import re
|
||||
|
||||
char_pattern = re.compile(r'\(char (\d+)\)')
|
||||
if match := char_pattern.search(error_message):
|
||||
return int(match[1])
|
||||
else:
|
||||
raise ValueError("Character position not found in the error message.")
|
||||
|
||||
|
||||
def add_quotes_to_property_names(json_string: str) -> str:
|
||||
"""
|
||||
Add quotes to property names in a JSON string.
|
||||
|
||||
Args:
|
||||
json_string (str): The JSON string.
|
||||
|
||||
Returns:
|
||||
str: The JSON string with quotes added to property names.
|
||||
"""
|
||||
|
||||
def replace_func(match):
|
||||
return f'"{match.group(1)}":'
|
||||
|
||||
property_name_pattern = re.compile(r'(\w+):')
|
||||
corrected_json_string = property_name_pattern.sub(
|
||||
replace_func,
|
||||
json_string)
|
||||
|
||||
try:
|
||||
json.loads(corrected_json_string)
|
||||
return corrected_json_string
|
||||
except json.JSONDecodeError as e:
|
||||
raise e
|
||||
|
||||
|
||||
def balance_braces(json_string: str) -> str:
|
||||
"""
|
||||
Balance the braces in a JSON string.
|
||||
|
||||
Args:
|
||||
json_string (str): The JSON string.
|
||||
|
||||
Returns:
|
||||
str: The JSON string with braces balanced.
|
||||
"""
|
||||
|
||||
open_braces_count = json_string.count('{')
|
||||
close_braces_count = json_string.count('}')
|
||||
|
||||
while open_braces_count > close_braces_count:
|
||||
json_string += '}'
|
||||
close_braces_count += 1
|
||||
|
||||
while close_braces_count > open_braces_count:
|
||||
json_string = json_string.rstrip('}')
|
||||
close_braces_count -= 1
|
||||
|
||||
try:
|
||||
json.loads(json_string)
|
||||
return json_string
|
||||
except json.JSONDecodeError as e:
|
||||
pass
|
||||
|
||||
|
||||
def fix_invalid_escape(json_str: str, error_message: str) -> str:
|
||||
while error_message.startswith('Invalid \\escape'):
|
||||
bad_escape_location = extract_char_position(error_message)
|
||||
json_str = json_str[:bad_escape_location] + \
|
||||
json_str[bad_escape_location + 1:]
|
||||
try:
|
||||
json.loads(json_str)
|
||||
return json_str
|
||||
except json.JSONDecodeError as e:
|
||||
if cfg.debug:
|
||||
print('json loads error - fix invalid escape', e)
|
||||
error_message = str(e)
|
||||
return json_str
|
||||
|
||||
|
||||
def correct_json(json_str: str) -> str:
|
||||
"""
|
||||
Correct common JSON errors.
|
||||
|
||||
Args:
|
||||
json_str (str): The JSON string.
|
||||
"""
|
||||
|
||||
try:
|
||||
if cfg.debug:
|
||||
print("json", json_str)
|
||||
json.loads(json_str)
|
||||
return json_str
|
||||
except json.JSONDecodeError as e:
|
||||
if cfg.debug:
|
||||
print('json loads error', e)
|
||||
error_message = str(e)
|
||||
if error_message.startswith('Invalid \\escape'):
|
||||
json_str = fix_invalid_escape(json_str, error_message)
|
||||
if error_message.startswith('Expecting property name enclosed in double quotes'):
|
||||
json_str = add_quotes_to_property_names(json_str)
|
||||
try:
|
||||
json.loads(json_str)
|
||||
return json_str
|
||||
except json.JSONDecodeError as e:
|
||||
if cfg.debug:
|
||||
print('json loads error - add quotes', e)
|
||||
error_message = str(e)
|
||||
if balanced_str := balance_braces(json_str):
|
||||
return balanced_str
|
||||
return json_str
|
|
@ -6,6 +6,7 @@ openai.api_key = cfg.openai_api_key
|
|||
|
||||
# Overly simple abstraction until we create something better
|
||||
def create_chat_completion(messages, model=None, temperature=None, max_tokens=None)->str:
|
||||
"""Create a chat completion using the OpenAI API"""
|
||||
if cfg.use_azure:
|
||||
response = openai.ChatCompletion.create(
|
||||
deployment_id=cfg.openai_deployment_id,
|
||||
|
|
|
@ -1,22 +1,41 @@
|
|||
import json
|
||||
import random
|
||||
import commands as cmd
|
||||
from factory import MemoryFactory
|
||||
import utils
|
||||
from memory import get_memory
|
||||
import data
|
||||
import chat
|
||||
from colorama import Fore, Style
|
||||
from spinner import Spinner
|
||||
import time
|
||||
import speak
|
||||
from enum import Enum, auto
|
||||
import sys
|
||||
from config import Config
|
||||
from json_parser import fix_and_parse_json
|
||||
from ai_config import AIConfig
|
||||
import traceback
|
||||
import yaml
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
cfg = Config()
|
||||
|
||||
def configure_logging():
|
||||
logging.basicConfig(filename='log.txt',
|
||||
filemode='a',
|
||||
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
|
||||
datefmt='%H:%M:%S',
|
||||
level=logging.DEBUG)
|
||||
return logging.getLogger('AutoGPT')
|
||||
|
||||
def check_openai_api_key():
|
||||
"""Check if the OpenAI API key is set in config.py or as an environment variable."""
|
||||
if not cfg.openai_api_key:
|
||||
print(
|
||||
Fore.RED +
|
||||
"Please set your OpenAI API key in config.py or as an environment variable."
|
||||
)
|
||||
print("You can get your key from https://beta.openai.com/account/api-keys")
|
||||
exit(1)
|
||||
|
||||
def print_to_console(
|
||||
title,
|
||||
|
@ -25,11 +44,14 @@ def print_to_console(
|
|||
speak_text=False,
|
||||
min_typing_speed=0.05,
|
||||
max_typing_speed=0.01):
|
||||
"""Prints text to the console with a typing effect"""
|
||||
global cfg
|
||||
global logger
|
||||
if speak_text and cfg.speak_mode:
|
||||
speak.say_text(f"{title}. {content}")
|
||||
print(title_color + title + " " + Style.RESET_ALL, end="")
|
||||
if content:
|
||||
logger.info(title + ': ' + content)
|
||||
if isinstance(content, list):
|
||||
content = " ".join(content)
|
||||
words = content.split()
|
||||
|
@ -46,6 +68,7 @@ def print_to_console(
|
|||
|
||||
|
||||
def print_assistant_thoughts(assistant_reply):
|
||||
"""Prints the assistant's thoughts to the console"""
|
||||
global ai_name
|
||||
global cfg
|
||||
try:
|
||||
|
@ -105,7 +128,7 @@ def print_assistant_thoughts(assistant_reply):
|
|||
|
||||
|
||||
def load_variables(config_file="config.yaml"):
|
||||
# Load variables from yaml file if it exists
|
||||
"""Load variables from yaml file if it exists, otherwise prompt the user for input"""
|
||||
try:
|
||||
with open(config_file) as file:
|
||||
config = yaml.load(file, Loader=yaml.FullLoader)
|
||||
|
@ -119,12 +142,12 @@ def load_variables(config_file="config.yaml"):
|
|||
|
||||
# Prompt the user for input if config file is missing or empty values
|
||||
if not ai_name:
|
||||
ai_name = input("Name your AI: ")
|
||||
ai_name = utils.clean_input("Name your AI: ")
|
||||
if ai_name == "":
|
||||
ai_name = "Entrepreneur-GPT"
|
||||
|
||||
if not ai_role:
|
||||
ai_role = input(f"{ai_name} is: ")
|
||||
if not ai_role:
|
||||
ai_role = utils.clean_input(f"{ai_name} is: ")
|
||||
if ai_role == "":
|
||||
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
|
||||
|
||||
|
@ -134,13 +157,13 @@ def load_variables(config_file="config.yaml"):
|
|||
print("Enter nothing to load defaults, enter nothing when finished.")
|
||||
ai_goals = []
|
||||
for i in range(5):
|
||||
ai_goal = input(f"Goal {i+1}: ")
|
||||
ai_goal = utils.clean_input(f"Goal {i+1}: ")
|
||||
if ai_goal == "":
|
||||
break
|
||||
ai_goals.append(ai_goal)
|
||||
if len(ai_goals) == 0:
|
||||
ai_goals = ["Increase net worth", "Grow Twitter Account", "Develop and manage multiple businesses autonomously"]
|
||||
|
||||
|
||||
# Save variables to yaml file
|
||||
config = {"ai_name": ai_name, "ai_role": ai_role, "ai_goals": ai_goals}
|
||||
with open(config_file, "w") as file:
|
||||
|
@ -159,6 +182,7 @@ def load_variables(config_file="config.yaml"):
|
|||
|
||||
|
||||
def construct_prompt():
|
||||
"""Construct the prompt for the AI to respond to"""
|
||||
config = AIConfig.load()
|
||||
if config.ai_name:
|
||||
print_to_console(
|
||||
|
@ -166,27 +190,28 @@ def construct_prompt():
|
|||
Fore.GREEN,
|
||||
f"Would you like me to return to being {config.ai_name}?",
|
||||
speak_text=True)
|
||||
should_continue = input(f"""Continue with the last settings?
|
||||
should_continue = utils.clean_input(f"""Continue with the last settings?
|
||||
Name: {config.ai_name}
|
||||
Role: {config.ai_role}
|
||||
Goals: {config.ai_goals}
|
||||
Goals: {config.ai_goals}
|
||||
Continue (y/n): """)
|
||||
if should_continue.lower() == "n":
|
||||
config = AIConfig()
|
||||
|
||||
if not config.ai_name:
|
||||
if not config.ai_name:
|
||||
config = prompt_user()
|
||||
config.save()
|
||||
|
||||
# Get rid of this global:
|
||||
global ai_name
|
||||
ai_name = config.ai_name
|
||||
|
||||
|
||||
full_prompt = config.construct_full_prompt()
|
||||
return full_prompt
|
||||
|
||||
|
||||
def prompt_user():
|
||||
"""Prompt the user for input"""
|
||||
ai_name = ""
|
||||
# Construct the prompt
|
||||
print_to_console(
|
||||
|
@ -200,7 +225,7 @@ def prompt_user():
|
|||
"Name your AI: ",
|
||||
Fore.GREEN,
|
||||
"For example, 'Entrepreneur-GPT'")
|
||||
ai_name = input("AI Name: ")
|
||||
ai_name = utils.clean_input("AI Name: ")
|
||||
if ai_name == "":
|
||||
ai_name = "Entrepreneur-GPT"
|
||||
|
||||
|
@ -215,7 +240,7 @@ def prompt_user():
|
|||
"Describe your AI's role: ",
|
||||
Fore.GREEN,
|
||||
"For example, 'an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.'")
|
||||
ai_role = input(f"{ai_name} is: ")
|
||||
ai_role = utils.clean_input(f"{ai_name} is: ")
|
||||
if ai_role == "":
|
||||
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
|
||||
|
||||
|
@ -227,7 +252,7 @@ def prompt_user():
|
|||
print("Enter nothing to load defaults, enter nothing when finished.", flush=True)
|
||||
ai_goals = []
|
||||
for i in range(5):
|
||||
ai_goal = input(f"{Fore.LIGHTBLUE_EX}Goal{Style.RESET_ALL} {i+1}: ")
|
||||
ai_goal = utils.clean_input(f"{Fore.LIGHTBLUE_EX}Goal{Style.RESET_ALL} {i+1}: ")
|
||||
if ai_goal == "":
|
||||
break
|
||||
ai_goals.append(ai_goal)
|
||||
|
@ -239,10 +264,11 @@ def prompt_user():
|
|||
return config
|
||||
|
||||
def parse_arguments():
|
||||
"""Parses the arguments passed to the script"""
|
||||
global cfg
|
||||
cfg.set_continuous_mode(False)
|
||||
cfg.set_speak_mode(False)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process arguments.')
|
||||
parser.add_argument('--continuous', action='store_true', help='Enable Continuous Mode')
|
||||
parser.add_argument('--speak', action='store_true', help='Enable Speak Mode')
|
||||
|
@ -262,14 +288,23 @@ def parse_arguments():
|
|||
print_to_console("Speak Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_speak_mode(True)
|
||||
|
||||
if args.debug:
|
||||
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_debug_mode(True)
|
||||
|
||||
if args.gpt3only:
|
||||
print_to_console("GPT3.5 Only Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_smart_llm_model(cfg.fast_llm_model)
|
||||
|
||||
if args.debug:
|
||||
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_debug_mode(True)
|
||||
|
||||
|
||||
# TODO: fill in llm values here
|
||||
|
||||
check_openai_api_key()
|
||||
cfg = Config()
|
||||
logger = configure_logging()
|
||||
parse_arguments()
|
||||
ai_name = ""
|
||||
prompt = construct_prompt()
|
||||
|
@ -283,8 +318,7 @@ user_input = "Determine which next command to use, and respond using the format
|
|||
|
||||
# Initialize memory and make sure it is empty.
|
||||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = MemoryFactory.get_memory(cfg.memory_provider)
|
||||
memory.clear()
|
||||
memory = get_memory(cfg, init=True)
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
|
||||
# Interaction Loop
|
||||
|
@ -320,7 +354,7 @@ while True:
|
|||
f"Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for {ai_name}...",
|
||||
flush=True)
|
||||
while True:
|
||||
console_input = input(Fore.MAGENTA + "Input:" + Style.RESET_ALL)
|
||||
console_input = utils.clean_input(Fore.MAGENTA + "Input:" + Style.RESET_ALL)
|
||||
if console_input.lower() == "y":
|
||||
user_input = "GENERATE NEXT COMMAND JSON"
|
||||
break
|
||||
|
@ -356,7 +390,7 @@ while True:
|
|||
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
|
||||
|
||||
# Execute command
|
||||
if command_name.lower() == "error":
|
||||
if command_name.lower().startswith( "error" ):
|
||||
result = f"Command {command_name} threw the following error: " + arguments
|
||||
elif command_name == "human_feedback":
|
||||
result = f"Human feedback: {user_input}"
|
||||
|
@ -381,4 +415,3 @@ while True:
|
|||
chat.create_chat_message(
|
||||
"system", "Unable to execute command"))
|
||||
print_to_console("SYSTEM: ", Fore.YELLOW, "Unable to execute command")
|
||||
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
from memory.local import LocalCache
|
||||
try:
|
||||
from memory.redismem import RedisMemory
|
||||
except ImportError:
|
||||
print("Redis not installed. Skipping import.")
|
||||
RedisMemory = None
|
||||
|
||||
try:
|
||||
from memory.pinecone import PineconeMemory
|
||||
except ImportError:
|
||||
print("Pinecone not installed. Skipping import.")
|
||||
PineconeMemory = None
|
||||
|
||||
try:
|
||||
from memory.weaviate import WeaviateMemory
|
||||
except ImportError:
|
||||
print("Weaviate not installed. Skipping import.")
|
||||
WeaviateMemory = None
|
||||
|
||||
def get_memory(cfg, init=False):
|
||||
memory = None
|
||||
if cfg.memory_backend == "pinecone":
|
||||
if not PineconeMemory:
|
||||
print("Error: Pinecone is not installed. Please install pinecone"
|
||||
" to use Pinecone as a memory backend.")
|
||||
else:
|
||||
memory = PineconeMemory(cfg)
|
||||
if init:
|
||||
memory.clear()
|
||||
elif cfg.memory_backend == "redis":
|
||||
if not RedisMemory:
|
||||
print("Error: Redis is not installed. Please install redis-py to"
|
||||
" use Redis as a memory backend.")
|
||||
else:
|
||||
memory = RedisMemory(cfg)
|
||||
elif cfg.memory_backend == "weaviate":
|
||||
if not WeaviateMemory:
|
||||
print("Error: Weaviate is not installed. Please install weaviate-client to"
|
||||
" use Weaviate as a memory backend.")
|
||||
else:
|
||||
memory = WeaviateMemory(cfg)
|
||||
|
||||
if memory is None:
|
||||
memory = LocalCache(cfg)
|
||||
if init:
|
||||
memory.clear()
|
||||
return memory
|
||||
|
||||
|
||||
__all__ = [
|
||||
"get_memory",
|
||||
"LocalCache",
|
||||
"RedisMemory",
|
||||
"PineconeMemory",
|
||||
"WeaviateMemory"
|
||||
]
|
|
@ -0,0 +1,31 @@
|
|||
"""Base class for memory providers."""
|
||||
import abc
|
||||
from config import AbstractSingleton
|
||||
import openai
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
class MemoryProviderSingleton(AbstractSingleton):
|
||||
@abc.abstractmethod
|
||||
def add(self, data):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get(self, data):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def clear(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_stats(self):
|
||||
pass
|
|
@ -0,0 +1,114 @@
|
|||
import dataclasses
|
||||
import orjson
|
||||
from typing import Any, List, Optional
|
||||
import numpy as np
|
||||
import os
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
EMBED_DIM = 1536
|
||||
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
|
||||
|
||||
|
||||
def create_default_embeddings():
|
||||
return np.zeros((0, EMBED_DIM)).astype(np.float32)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CacheContent:
|
||||
texts: List[str] = dataclasses.field(default_factory=list)
|
||||
embeddings: np.ndarray = dataclasses.field(
|
||||
default_factory=create_default_embeddings
|
||||
)
|
||||
|
||||
|
||||
class LocalCache(MemoryProviderSingleton):
|
||||
|
||||
# on load, load our database
|
||||
def __init__(self, cfg) -> None:
|
||||
self.filename = f"{cfg.memory_index}.json"
|
||||
if os.path.exists(self.filename):
|
||||
with open(self.filename, 'rb') as f:
|
||||
loaded = orjson.loads(f.read())
|
||||
self.data = CacheContent(**loaded)
|
||||
else:
|
||||
self.data = CacheContent()
|
||||
|
||||
def add(self, text: str):
|
||||
"""
|
||||
Add text to our list of texts, add embedding as row to our
|
||||
embeddings-matrix
|
||||
|
||||
Args:
|
||||
text: str
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
if 'Command Error:' in text:
|
||||
return ""
|
||||
self.data.texts.append(text)
|
||||
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
vector = np.array(embedding).astype(np.float32)
|
||||
vector = vector[np.newaxis, :]
|
||||
self.data.embeddings = np.concatenate(
|
||||
[
|
||||
vector,
|
||||
self.data.embeddings,
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
|
||||
with open(self.filename, 'wb') as f:
|
||||
out = orjson.dumps(
|
||||
self.data,
|
||||
option=SAVE_OPTIONS
|
||||
)
|
||||
f.write(out)
|
||||
return text
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.data = CacheContent()
|
||||
return "Obliviated"
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def get_relevant(self, text: str, k: int) -> List[Any]:
|
||||
""""
|
||||
matrix-vector mult to find score-for-each-row-of-matrix
|
||||
get indices for top-k winning scores
|
||||
return texts for those indices
|
||||
Args:
|
||||
text: str
|
||||
k: int
|
||||
|
||||
Returns: List[str]
|
||||
"""
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
scores = np.dot(self.data.embeddings, embedding)
|
||||
|
||||
top_k_indices = np.argsort(scores)[-k:][::-1]
|
||||
|
||||
return [self.data.texts[i] for i in top_k_indices]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the local cache.
|
||||
"""
|
||||
return len(self.data.texts), self.data.embeddings.shape
|
|
@ -1,14 +1,10 @@
|
|||
from config import Config
|
||||
from providers.memory import Memory, get_ada_embedding
|
||||
import pinecone
|
||||
|
||||
cfg = Config()
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
class PineconeMemory(Memory):
|
||||
def __init__(self):
|
||||
# raise an exception if pinecone_api_key or region is not provided
|
||||
if not cfg.pinecone_api_key or not cfg.pinecone_region: raise Exception("Please provide pinecone_api_key and pinecone_region")
|
||||
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
pinecone_api_key = cfg.pinecone_api_key
|
||||
pinecone_region = cfg.pinecone_region
|
||||
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
|
|
@ -0,0 +1,143 @@
|
|||
"""Redis memory provider."""
|
||||
from typing import Any, List, Optional
|
||||
import redis
|
||||
from redis.commands.search.field import VectorField, TextField
|
||||
from redis.commands.search.query import Query
|
||||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
import numpy as np
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
SCHEMA = [
|
||||
TextField("data"),
|
||||
VectorField(
|
||||
"embedding",
|
||||
"HNSW",
|
||||
{
|
||||
"TYPE": "FLOAT32",
|
||||
"DIM": 1536,
|
||||
"DISTANCE_METRIC": "COSINE"
|
||||
}
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class RedisMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
"""
|
||||
Initializes the Redis memory provider.
|
||||
|
||||
Args:
|
||||
cfg: The config object.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
redis_host = cfg.redis_host
|
||||
redis_port = cfg.redis_port
|
||||
redis_password = cfg.redis_password
|
||||
self.dimension = 1536
|
||||
self.redis = redis.Redis(
|
||||
host=redis_host,
|
||||
port=redis_port,
|
||||
password=redis_password,
|
||||
db=0 # Cannot be changed
|
||||
)
|
||||
self.cfg = cfg
|
||||
if cfg.wipe_redis_on_start:
|
||||
self.redis.flushall()
|
||||
try:
|
||||
self.redis.ft(f"{cfg.memory_index}").create_index(
|
||||
fields=SCHEMA,
|
||||
definition=IndexDefinition(
|
||||
prefix=[f"{cfg.memory_index}:"],
|
||||
index_type=IndexType.HASH
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error creating Redis search index: ", e)
|
||||
existing_vec_num = self.redis.get(f'{cfg.memory_index}-vec_num')
|
||||
self.vec_num = int(existing_vec_num.decode('utf-8')) if\
|
||||
existing_vec_num else 0
|
||||
|
||||
def add(self, data: str) -> str:
|
||||
"""
|
||||
Adds a data point to the memory.
|
||||
|
||||
Args:
|
||||
data: The data to add.
|
||||
|
||||
Returns: Message indicating that the data has been added.
|
||||
"""
|
||||
if 'Command Error:' in data:
|
||||
return ""
|
||||
vector = get_ada_embedding(data)
|
||||
vector = np.array(vector).astype(np.float32).tobytes()
|
||||
data_dict = {
|
||||
b"data": data,
|
||||
"embedding": vector
|
||||
}
|
||||
pipe = self.redis.pipeline()
|
||||
pipe.hset(f"{self.cfg.memory_index}:{self.vec_num}", mapping=data_dict)
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n"\
|
||||
f"data: {data}"
|
||||
self.vec_num += 1
|
||||
pipe.set(f'{self.cfg.memory_index}-vec_num', self.vec_num)
|
||||
pipe.execute()
|
||||
return _text
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.redis.flushall()
|
||||
return "Obliviated"
|
||||
|
||||
def get_relevant(
|
||||
self,
|
||||
data: str,
|
||||
num_relevant: int = 5
|
||||
) -> Optional[List[Any]]:
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
num_relevant: The number of relevant data to return.
|
||||
|
||||
Returns: A list of the most relevant data.
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]"
|
||||
query = Query(base_query).return_fields(
|
||||
"data",
|
||||
"vector_score"
|
||||
).sort_by("vector_score").dialect(2)
|
||||
query_vector = np.array(query_embedding).astype(np.float32).tobytes()
|
||||
|
||||
try:
|
||||
results = self.redis.ft(f"{self.cfg.memory_index}").search(
|
||||
query, query_params={"vector": query_vector}
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error calling Redis search: ", e)
|
||||
return None
|
||||
return [result.data for result in results.docs]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the memory index.
|
||||
"""
|
||||
return self.redis.ft(f"{self.cfg.memory_index}").info()
|
|
@ -1,41 +1,38 @@
|
|||
from config import Config
|
||||
from providers.memory import Memory, get_ada_embedding
|
||||
from weaviate import Client
|
||||
import weaviate
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
import uuid
|
||||
|
||||
import weaviate
|
||||
from weaviate import Client
|
||||
from weaviate.util import generate_uuid5
|
||||
|
||||
cfg = Config()
|
||||
def default_schema(weaviate_index):
|
||||
return {
|
||||
"class": weaviate_index,
|
||||
"properties": [
|
||||
{
|
||||
"name": "raw_text",
|
||||
"dataType": ["text"],
|
||||
"description": "original text for the embedding"
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
SCHEMA = {
|
||||
"class": cfg.weaviate_index,
|
||||
"properties": [
|
||||
{
|
||||
"name": "raw_text",
|
||||
"dataType": ["text"],
|
||||
"description": "original text for the embedding"
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
class WeaviateMemory(Memory):
|
||||
|
||||
def __init__(self):
|
||||
auth_credentials = self._build_auth_credentials()
|
||||
class WeaviateMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
auth_credentials = self._build_auth_credentials(cfg)
|
||||
|
||||
url = f'{cfg.weaviate_host}:{cfg.weaviate_port}'
|
||||
|
||||
self.client = Client(url, auth_client_secret=auth_credentials)
|
||||
|
||||
self.index = cfg.memory_index
|
||||
self._create_schema()
|
||||
|
||||
def _create_schema(self):
|
||||
if not self.client.schema.contains(SCHEMA):
|
||||
self.client.schema.create_class(SCHEMA)
|
||||
schema = default_schema(self.index)
|
||||
if not self.client.schema.contains(schema):
|
||||
self.client.schema.create_class(schema)
|
||||
|
||||
@staticmethod
|
||||
def _build_auth_credentials():
|
||||
def _build_auth_credentials(self, cfg):
|
||||
if cfg.weaviate_username and cfg.weaviate_password:
|
||||
return weaviate_auth.AuthClientPassword(cfg.weaviate_username, cfg.weaviate_password)
|
||||
else:
|
||||
|
@ -44,9 +41,9 @@ class WeaviateMemory(Memory):
|
|||
def add(self, data):
|
||||
vector = get_ada_embedding(data)
|
||||
|
||||
doc_uuid = generate_uuid5(data, cfg.weaviate_index)
|
||||
doc_uuid = generate_uuid5(data, self.index)
|
||||
data_object = {
|
||||
'class': cfg.weaviate_index,
|
||||
'class': self.index,
|
||||
'raw_text': data
|
||||
}
|
||||
|
||||
|
@ -54,7 +51,7 @@ class WeaviateMemory(Memory):
|
|||
batch.add_data_object(
|
||||
uuid=doc_uuid,
|
||||
data_object=data_object,
|
||||
class_name=cfg.weaviate_index,
|
||||
class_name=self.index,
|
||||
vector=vector
|
||||
)
|
||||
|
||||
|
@ -80,15 +77,13 @@ class WeaviateMemory(Memory):
|
|||
def get_relevant(self, data, num_relevant=5):
|
||||
query_embedding = get_ada_embedding(data)
|
||||
try:
|
||||
results = self.client.query.get(cfg.weaviate_index, ['raw_text']) \
|
||||
results = self.client.query.get(self.index, ['raw_text']) \
|
||||
.with_near_vector({'vector': query_embedding, 'certainty': 0.7}) \
|
||||
.with_limit(num_relevant) \
|
||||
.do()
|
||||
|
||||
print(results)
|
||||
|
||||
if len(results['data']['Get'][cfg.weaviate_index]) > 0:
|
||||
return [str(item['raw_text']) for item in results['data']['Get'][cfg.weaviate_index]]
|
||||
if len(results['data']['Get'][self.index]) > 0:
|
||||
return [str(item['raw_text']) for item in results['data']['Get'][self.index]]
|
||||
else:
|
||||
return []
|
||||
|
||||
|
@ -97,4 +92,9 @@ class WeaviateMemory(Memory):
|
|||
return []
|
||||
|
||||
def get_stats(self):
|
||||
return self.client.index_stats.get(cfg.weaviate_index)
|
||||
result = self.client.query.aggregate(self.index) \
|
||||
.with_meta_count() \
|
||||
.do()
|
||||
class_data = result['data']['Aggregate'][self.index]
|
||||
|
||||
return class_data[0]['meta'] if class_data else {}
|
|
@ -1,26 +0,0 @@
|
|||
from config import Singleton
|
||||
import openai
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
def get_text_from_embedding(embedding):
|
||||
return openai.Embedding.retrieve(embedding, model="text-embedding-ada-002")["data"][0]["text"]
|
||||
|
||||
class Memory(metaclass=Singleton):
|
||||
def add(self, data):
|
||||
raise NotImplementedError()
|
||||
|
||||
def get(self, data):
|
||||
raise NotImplementedError()
|
||||
|
||||
def clear(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_stats(self):
|
||||
raise NotImplementedError()
|
|
@ -4,6 +4,8 @@ import requests
|
|||
from config import Config
|
||||
cfg = Config()
|
||||
import gtts
|
||||
import threading
|
||||
from threading import Lock, Semaphore
|
||||
|
||||
|
||||
# TODO: Nicer names for these ids
|
||||
|
@ -14,7 +16,11 @@ tts_headers = {
|
|||
"xi-api-key": cfg.elevenlabs_api_key
|
||||
}
|
||||
|
||||
mutex_lock = Lock() # Ensure only one sound is played at a time
|
||||
queue_semaphore = Semaphore(1) # The amount of sounds to queue before blocking the main thread
|
||||
|
||||
def eleven_labs_speech(text, voice_index=0):
|
||||
"""Speak text using elevenlabs.io's API"""
|
||||
tts_url = "https://api.elevenlabs.io/v1/text-to-speech/{voice_id}".format(
|
||||
voice_id=voices[voice_index])
|
||||
formatted_message = {"text": text}
|
||||
|
@ -22,10 +28,11 @@ def eleven_labs_speech(text, voice_index=0):
|
|||
tts_url, headers=tts_headers, json=formatted_message)
|
||||
|
||||
if response.status_code == 200:
|
||||
with open("speech.mpeg", "wb") as f:
|
||||
f.write(response.content)
|
||||
playsound("speech.mpeg")
|
||||
os.remove("speech.mpeg")
|
||||
with mutex_lock:
|
||||
with open("speech.mpeg", "wb") as f:
|
||||
f.write(response.content)
|
||||
playsound("speech.mpeg", True)
|
||||
os.remove("speech.mpeg")
|
||||
return True
|
||||
else:
|
||||
print("Request failed with status code:", response.status_code)
|
||||
|
@ -34,15 +41,29 @@ def eleven_labs_speech(text, voice_index=0):
|
|||
|
||||
def gtts_speech(text):
|
||||
tts = gtts.gTTS(text)
|
||||
tts.save("speech.mp3")
|
||||
playsound("speech.mp3")
|
||||
os.remove("speech.mp3")
|
||||
with mutex_lock:
|
||||
tts.save("speech.mp3")
|
||||
playsound("speech.mp3", True)
|
||||
os.remove("speech.mp3")
|
||||
|
||||
def macos_tts_speech(text):
|
||||
os.system(f'say "{text}"')
|
||||
|
||||
def say_text(text, voice_index=0):
|
||||
if not cfg.elevenlabs_api_key:
|
||||
gtts_speech(text)
|
||||
else:
|
||||
success = eleven_labs_speech(text, voice_index)
|
||||
if not success:
|
||||
gtts_speech(text)
|
||||
|
||||
def speak():
|
||||
if not cfg.elevenlabs_api_key:
|
||||
if cfg.use_mac_os_tts == 'True':
|
||||
macos_tts_speech(text)
|
||||
else:
|
||||
gtts_speech(text)
|
||||
else:
|
||||
success = eleven_labs_speech(text, voice_index)
|
||||
if not success:
|
||||
gtts_speech(text)
|
||||
|
||||
queue_semaphore.release()
|
||||
|
||||
queue_semaphore.acquire(True)
|
||||
thread = threading.Thread(target=speak)
|
||||
thread.start()
|
||||
|
|
|
@ -5,7 +5,9 @@ import time
|
|||
|
||||
|
||||
class Spinner:
|
||||
"""A simple spinner class"""
|
||||
def __init__(self, message="Loading...", delay=0.1):
|
||||
"""Initialize the spinner class"""
|
||||
self.spinner = itertools.cycle(['-', '/', '|', '\\'])
|
||||
self.delay = delay
|
||||
self.message = message
|
||||
|
@ -13,6 +15,7 @@ class Spinner:
|
|||
self.spinner_thread = None
|
||||
|
||||
def spin(self):
|
||||
"""Spin the spinner"""
|
||||
while self.running:
|
||||
sys.stdout.write(next(self.spinner) + " " + self.message + "\r")
|
||||
sys.stdout.flush()
|
||||
|
@ -20,11 +23,13 @@ class Spinner:
|
|||
sys.stdout.write('\b' * (len(self.message) + 2))
|
||||
|
||||
def __enter__(self):
|
||||
"""Start the spinner"""
|
||||
self.running = True
|
||||
self.spinner_thread = threading.Thread(target=self.spin)
|
||||
self.spinner_thread.start()
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
"""Stop the spinner"""
|
||||
self.running = False
|
||||
self.spinner_thread.join()
|
||||
sys.stdout.write('\r' + ' ' * (len(self.message) + 2) + '\r')
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
def clean_input(prompt: str=''):
|
||||
try:
|
||||
return input(prompt)
|
||||
except KeyboardInterrupt:
|
||||
print("You interrupted Auto-GPT")
|
||||
print("Quitting...")
|
||||
exit(0)
|
||||
|
|
@ -11,12 +11,12 @@ class TestParseJson(unittest.TestCase):
|
|||
json_str = '{"name": "John", "age": 30, "city": "New York"}'
|
||||
obj = fix_and_parse_json(json_str)
|
||||
self.assertEqual(obj, {"name": "John", "age": 30, "city": "New York"})
|
||||
|
||||
|
||||
def test_invalid_json_minor(self):
|
||||
# Test that an invalid JSON string can be fixed with gpt
|
||||
json_str = '{"name": "John", "age": 30, "city": "New York",}'
|
||||
self.assertEqual(fix_and_parse_json(json_str, try_to_fix_with_gpt=False), {"name": "John", "age": 30, "city": "New York"})
|
||||
|
||||
|
||||
def test_invalid_json_major_with_gpt(self):
|
||||
# Test that an invalid JSON string raises an error when try_to_fix_with_gpt is False
|
||||
json_str = 'BEGIN: "name": "John" - "age": 30 - "city": "New York" :END'
|
||||
|
@ -112,4 +112,4 @@ class TestParseJson(unittest.TestCase):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
unittest.main()
|
||||
|
|
|
@ -1,55 +0,0 @@
|
|||
import unittest
|
||||
from unittest import mock
|
||||
import sys
|
||||
import os
|
||||
|
||||
sys.path.append(os.path.abspath('./scripts'))
|
||||
|
||||
from factory import MemoryFactory
|
||||
from providers.weaviate import WeaviateMemory
|
||||
from providers.pinecone import PineconeMemory
|
||||
|
||||
class TestMemoryFactory(unittest.TestCase):
|
||||
|
||||
def test_invalid_memory_provider(self):
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
memory = MemoryFactory.get_memory('Thanos')
|
||||
|
||||
def test_create_pinecone_provider(self):
|
||||
|
||||
# mock the init function of the provider to bypass
|
||||
# connection to the external pinecone service
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
with mock.patch.object(PineconeMemory, '__init__', __init__):
|
||||
memory = MemoryFactory.get_memory('pinecone')
|
||||
self.assertIsInstance(memory, PineconeMemory)
|
||||
|
||||
def test_create_weaviate_provider(self):
|
||||
|
||||
# mock the init function of the provider to bypass
|
||||
# connection to the external weaviate service
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
with mock.patch.object(WeaviateMemory, '__init__', __init__):
|
||||
memory = MemoryFactory.get_memory('weaviate')
|
||||
self.assertIsInstance(memory, WeaviateMemory)
|
||||
|
||||
def test_provider_is_singleton(self):
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
with mock.patch.object(WeaviateMemory, '__init__', __init__):
|
||||
instance = MemoryFactory.get_memory('weaviate')
|
||||
other_instance = MemoryFactory.get_memory('weaviate')
|
||||
|
||||
self.assertIs(instance, other_instance)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
@ -0,0 +1,99 @@
|
|||
|
||||
# Generated by CodiumAI
|
||||
|
||||
import requests
|
||||
import pytest
|
||||
|
||||
from scripts.browse import scrape_text
|
||||
|
||||
"""
|
||||
Code Analysis
|
||||
|
||||
Objective:
|
||||
The objective of the "scrape_text" function is to scrape the text content from a given URL and return it as a string, after removing any unwanted HTML tags and scripts.
|
||||
|
||||
Inputs:
|
||||
- url: a string representing the URL of the webpage to be scraped.
|
||||
|
||||
Flow:
|
||||
1. Send a GET request to the given URL using the requests library and the user agent header from the config file.
|
||||
2. Check if the response contains an HTTP error. If it does, return an error message.
|
||||
3. Use BeautifulSoup to parse the HTML content of the response and extract all script and style tags.
|
||||
4. Get the text content of the remaining HTML using the get_text() method of BeautifulSoup.
|
||||
5. Split the text into lines and then into chunks, removing any extra whitespace.
|
||||
6. Join the chunks into a single string with newline characters between them.
|
||||
7. Return the cleaned text.
|
||||
|
||||
Outputs:
|
||||
- A string representing the cleaned text content of the webpage.
|
||||
|
||||
Additional aspects:
|
||||
- The function uses the requests library and BeautifulSoup to handle the HTTP request and HTML parsing, respectively.
|
||||
- The function removes script and style tags from the HTML to avoid including unwanted content in the text output.
|
||||
- The function uses a generator expression to split the text into lines and chunks, which can improve performance for large amounts of text.
|
||||
"""
|
||||
|
||||
|
||||
|
||||
class TestScrapeText:
|
||||
|
||||
# Tests that scrape_text() returns the expected text when given a valid URL.
|
||||
def test_scrape_text_with_valid_url(self, mocker):
|
||||
# Mock the requests.get() method to return a response with expected text
|
||||
expected_text = "This is some sample text"
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = f"<html><body><div><p style='color: blue;'>{expected_text}</p></div></body></html>"
|
||||
mocker.patch("requests.get", return_value=mock_response)
|
||||
|
||||
# Call the function with a valid URL and assert that it returns the expected text
|
||||
url = "http://www.example.com"
|
||||
assert scrape_text(url) == expected_text
|
||||
|
||||
# Tests that the function returns an error message when an invalid or unreachable url is provided.
|
||||
def test_invalid_url(self, mocker):
|
||||
# Mock the requests.get() method to raise an exception
|
||||
mocker.patch("requests.get", side_effect=requests.exceptions.RequestException)
|
||||
|
||||
# Call the function with an invalid URL and assert that it returns an error message
|
||||
url = "http://www.invalidurl.com"
|
||||
error_message = scrape_text(url)
|
||||
assert "Error:" in error_message
|
||||
|
||||
# Tests that the function returns an empty string when the html page contains no text to be scraped.
|
||||
def test_no_text(self, mocker):
|
||||
# Mock the requests.get() method to return a response with no text
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = "<html><body></body></html>"
|
||||
mocker.patch("requests.get", return_value=mock_response)
|
||||
|
||||
# Call the function with a valid URL and assert that it returns an empty string
|
||||
url = "http://www.example.com"
|
||||
assert scrape_text(url) == ""
|
||||
|
||||
# Tests that the function returns an error message when the response status code is an http error (>=400).
|
||||
def test_http_error(self, mocker):
|
||||
# Mock the requests.get() method to return a response with a 404 status code
|
||||
mocker.patch('requests.get', return_value=mocker.Mock(status_code=404))
|
||||
|
||||
# Call the function with a URL
|
||||
result = scrape_text("https://www.example.com")
|
||||
|
||||
# Check that the function returns an error message
|
||||
assert result == "Error: HTTP 404 error"
|
||||
|
||||
# Tests that scrape_text() properly handles HTML tags.
|
||||
def test_scrape_text_with_html_tags(self, mocker):
|
||||
# Create a mock response object with HTML containing tags
|
||||
html = "<html><body><p>This is <b>bold</b> text.</p></body></html>"
|
||||
mock_response = mocker.Mock()
|
||||
mock_response.status_code = 200
|
||||
mock_response.text = html
|
||||
mocker.patch("requests.get", return_value=mock_response)
|
||||
|
||||
# Call the function with a URL
|
||||
result = scrape_text("https://www.example.com")
|
||||
|
||||
# Check that the function properly handles HTML tags
|
||||
assert result == "This is bold text."
|
|
@ -0,0 +1,99 @@
|
|||
import unittest
|
||||
from unittest import mock
|
||||
import sys
|
||||
import os
|
||||
|
||||
from weaviate import Client
|
||||
from weaviate.util import get_valid_uuid
|
||||
from uuid import uuid4
|
||||
|
||||
sys.path.append(os.path.abspath('./scripts'))
|
||||
from config import Config
|
||||
from memory.weaviate import WeaviateMemory
|
||||
from memory.base import get_ada_embedding
|
||||
|
||||
@mock.patch.dict(os.environ, {
|
||||
"WEAVIATE_HOST": "http://127.0.0.1",
|
||||
"WEAVIATE_PORT": "8080",
|
||||
"WEAVIATE_USERNAME": '',
|
||||
"WEAVIATE_PASSWORD": '',
|
||||
"MEMORY_INDEX": "AutogptTests"
|
||||
})
|
||||
class TestWeaviateMemory(unittest.TestCase):
|
||||
"""
|
||||
In order to run these tests you will need a local instance of
|
||||
Weaviate running. Refer to https://weaviate.io/developers/weaviate/installation/docker-compose
|
||||
for creating local instances using docker.
|
||||
"""
|
||||
def setUp(self):
|
||||
self.cfg = Config()
|
||||
|
||||
self.client = Client('http://127.0.0.1:8080')
|
||||
|
||||
try:
|
||||
self.client.schema.delete_class(self.cfg.memory_index)
|
||||
except:
|
||||
pass
|
||||
|
||||
self.memory = WeaviateMemory(self.cfg)
|
||||
|
||||
def test_add(self):
|
||||
doc = 'You are a Titan name Thanos and you are looking for the Infinity Stones'
|
||||
self.memory.add(doc)
|
||||
result = self.client.query.get(self.cfg.memory_index, ['raw_text']).do()
|
||||
actual = result['data']['Get'][self.cfg.memory_index]
|
||||
|
||||
self.assertEqual(len(actual), 1)
|
||||
self.assertEqual(actual[0]['raw_text'], doc)
|
||||
|
||||
def test_get(self):
|
||||
doc = 'You are an Avenger and swore to defend the Galaxy from a menace called Thanos'
|
||||
|
||||
with self.client.batch as batch:
|
||||
batch.add_data_object(
|
||||
uuid=get_valid_uuid(uuid4()),
|
||||
data_object={'raw_text': doc},
|
||||
class_name=self.cfg.memory_index,
|
||||
vector=get_ada_embedding(doc)
|
||||
)
|
||||
|
||||
batch.flush()
|
||||
|
||||
actual = self.memory.get(doc)
|
||||
|
||||
self.assertEqual(len(actual), 1)
|
||||
self.assertEqual(actual[0], doc)
|
||||
|
||||
|
||||
def test_get_stats(self):
|
||||
docs = [
|
||||
'You are now about to count the number of docs in this index',
|
||||
'And then you about to find out if you can count correctly'
|
||||
]
|
||||
|
||||
[self.memory.add(doc) for doc in docs]
|
||||
|
||||
stats = self.memory.get_stats()
|
||||
|
||||
self.assertTrue(stats)
|
||||
self.assertTrue('count' in stats)
|
||||
self.assertEqual(stats['count'], 2)
|
||||
|
||||
|
||||
def test_clear(self):
|
||||
docs = [
|
||||
'Shame this is the last test for this class',
|
||||
'Testing is fun when someone else is doing it'
|
||||
]
|
||||
|
||||
[self.memory.add(doc) for doc in docs]
|
||||
|
||||
self.assertEqual(self.memory.get_stats()['count'], 2)
|
||||
|
||||
self.memory.clear()
|
||||
|
||||
self.assertEqual(self.memory.get_stats()['count'], 0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue