feat(backend): Add nested dynamic pin-name support (#10082)

Suppose we have pint with list[list[int]] type, and we want directly
insert the a new value inside the first index of the first list e.g:
list[0][0] = X through a dynamic pin, this will be translated into
list_$_0_$_0, and the system does not currently support this.

### Changes 🏗️

Add support for nested dynamic pins for list, object, and dict.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] lots of unit tests
- [x] Tried inserting the value directly on the `value` nested field on
Google Sheets Write block.
<img width="371" alt="image"
src="https://github.com/user-attachments/assets/0a5e7213-b0e0-4fce-9e89-b39f7a583582"
/>
pull/10088/head^2
Zamil Majdy 2025-06-04 23:32:32 +07:00 committed by GitHub
parent 34009bc749
commit 4b70e778d2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 443 additions and 157 deletions

View File

@ -305,6 +305,13 @@ def _enqueue_next_nodes(
)
def register_next_executions(node_link: Link) -> list[NodeExecutionEntry]:
try:
return _register_next_executions(node_link)
except Exception as e:
log_metadata.exception(f"Failed to register next executions: {e}")
return []
def _register_next_executions(node_link: Link) -> list[NodeExecutionEntry]:
enqueued_executions = []
next_output_name = node_link.source_name
next_input_name = node_link.sink_name

View File

@ -174,68 +174,195 @@ def _is_cost_filter_match(cost_filter: BlockInput, input_data: BlockInput) -> bo
# ============ Execution Input Helpers ============ #
# --------------------------------------------------------------------------- #
# Delimiters
# --------------------------------------------------------------------------- #
LIST_SPLIT = "_$_"
DICT_SPLIT = "_#_"
OBJC_SPLIT = "_@_"
_DELIMS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
# --------------------------------------------------------------------------- #
# Tokenisation utilities
# --------------------------------------------------------------------------- #
def _next_delim(s: str) -> tuple[str | None, int]:
"""
Return the *earliest* delimiter appearing in `s` and its index.
If none present (None, -1).
"""
first: str | None = None
pos = len(s) # sentinel: larger than any real index
for d in _DELIMS:
i = s.find(d)
if 0 <= i < pos:
first, pos = d, i
return first, (pos if first else -1)
def _tokenise(path: str) -> list[tuple[str, str]] | None:
"""
Convert the raw path string (starting with a delimiter) into
[ (delimiter, identifier), ] or None if the syntax is malformed.
"""
tokens: list[tuple[str, str]] = []
while path:
# 1. Which delimiter starts this chunk?
delim = next((d for d in _DELIMS if path.startswith(d)), None)
if delim is None:
return None # invalid syntax
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
path = path[len(delim) :]
nxt_delim, pos = _next_delim(path)
token, path = (
path[: pos if pos != -1 else len(path)],
path[pos if pos != -1 else len(path) :],
)
if token == "":
return None # empty identifier is invalid
tokens.append((delim, token))
return tokens
# --------------------------------------------------------------------------- #
# Public API parsing (flattened ➜ concrete)
# --------------------------------------------------------------------------- #
def parse_execution_output(output: BlockData, name: str) -> Any | None:
"""
Extracts partial output data by name from a given BlockData.
Retrieve a nested value out of `output` using the flattened *name*.
The function supports extracting data from lists, dictionaries, and objects
using specific naming conventions:
- For lists: <output_name>_$_<index>
- For dictionaries: <output_name>_#_<key>
- For objects: <output_name>_@_<attribute>
Args:
output (BlockData): A tuple containing the output name and data.
name (str): The name used to extract specific data from the output.
Returns:
Any | None: The extracted data if found, otherwise None.
Examples:
>>> output = ("result", [10, 20, 30])
>>> parse_execution_output(output, "result_$_1")
20
>>> output = ("config", {"key1": "value1", "key2": "value2"})
>>> parse_execution_output(output, "config_#_key1")
'value1'
>>> class Sample:
... attr1 = "value1"
... attr2 = "value2"
>>> output = ("object", Sample())
>>> parse_execution_output(output, "object_@_attr1")
'value1'
On any failure (wrong name, wrong type, out-of-range, bad path)
returns **None**.
"""
output_name, output_data = output
base_name, data = output
if name == output_name:
return output_data
# Exact match → whole object
if name == base_name:
return data
if name.startswith(f"{output_name}{LIST_SPLIT}"):
index = int(name.split(LIST_SPLIT)[1])
if not isinstance(output_data, list) or len(output_data) <= index:
return None
return output_data[int(name.split(LIST_SPLIT)[1])]
# Must start with the expected name
if not name.startswith(base_name):
return None
path = name[len(base_name) :]
if not path:
return None # nothing left to parse
if name.startswith(f"{output_name}{DICT_SPLIT}"):
index = name.split(DICT_SPLIT)[1]
if not isinstance(output_data, dict) or index not in output_data:
return None
return output_data[index]
if name.startswith(f"{output_name}{OBJC_SPLIT}"):
index = name.split(OBJC_SPLIT)[1]
if isinstance(output_data, object) and hasattr(output_data, index):
return getattr(output_data, index)
tokens = _tokenise(path)
if tokens is None:
return None
return None
cur: Any = data
for delim, ident in tokens:
if delim == LIST_SPLIT:
# list[index]
try:
idx = int(ident)
except ValueError:
return None
if not isinstance(cur, list) or idx >= len(cur):
return None
cur = cur[idx]
elif delim == DICT_SPLIT:
if not isinstance(cur, dict) or ident not in cur:
return None
cur = cur[ident]
elif delim == OBJC_SPLIT:
if not hasattr(cur, ident):
return None
cur = getattr(cur, ident)
else:
return None # unreachable
return cur
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
"""
Recursive helper that *returns* the (possibly new) container with
`value` assigned along the remaining `tokens` path.
"""
if not tokens:
return value # leaf reached
delim, ident = tokens[0]
rest = tokens[1:]
# ---------- list ----------
if delim == LIST_SPLIT:
try:
idx = int(ident)
except ValueError:
raise ValueError("index must be an integer")
if container is None:
container = []
elif not isinstance(container, list):
container = list(container) if hasattr(container, "__iter__") else []
while len(container) <= idx:
container.append(None)
container[idx] = _assign(container[idx], rest, value)
return container
# ---------- dict ----------
if delim == DICT_SPLIT:
if container is None:
container = {}
elif not isinstance(container, dict):
container = dict(container) if hasattr(container, "items") else {}
container[ident] = _assign(container.get(ident), rest, value)
return container
# ---------- object ----------
if delim == OBJC_SPLIT:
if container is None or not isinstance(container, MockObject):
container = MockObject()
setattr(
container,
ident,
_assign(getattr(container, ident, None), rest, value),
)
return container
return value # unreachable
def merge_execution_input(data: BlockInput) -> BlockInput:
"""
Reconstruct nested objects from a *flattened* dict of key value.
Raises ValueError on syntactically invalid list indices.
"""
merged: BlockInput = {}
for key, value in data.items():
# Split off the base name (before the first delimiter, if any)
delim, pos = _next_delim(key)
if delim is None:
merged[key] = value
continue
base, path = key[:pos], key[pos:]
tokens = _tokenise(path)
if tokens is None:
# Invalid key; treat as scalar under the raw name
merged[key] = value
continue
merged[base] = _assign(merged.get(base), tokens, value)
data.update(merged)
return data
def validate_exec(
@ -292,77 +419,6 @@ def validate_exec(
return data, node_block.name
def merge_execution_input(data: BlockInput) -> BlockInput:
"""
Merges dynamic input pins into a single list, dictionary, or object based on naming patterns.
This function processes input keys that follow specific patterns to merge them into a unified structure:
- `<input_name>_$_<index>` for list inputs.
- `<input_name>_#_<index>` for dictionary inputs.
- `<input_name>_@_<index>` for object inputs.
Args:
data (BlockInput): A dictionary containing input keys and their corresponding values.
Returns:
BlockInput: A dictionary with merged inputs.
Raises:
ValueError: If a list index is not an integer.
Examples:
>>> data = {
... "list_$_0": "a",
... "list_$_1": "b",
... "dict_#_key1": "value1",
... "dict_#_key2": "value2",
... "object_@_attr1": "value1",
... "object_@_attr2": "value2"
... }
>>> merge_execution_input(data)
{
"list": ["a", "b"],
"dict": {"key1": "value1", "key2": "value2"},
"object": <MockObject attr1="value1" attr2="value2">
}
"""
# Merge all input with <input_name>_$_<index> into a single list.
items = list(data.items())
for key, value in items:
if LIST_SPLIT not in key:
continue
name, index = key.split(LIST_SPLIT)
if not index.isdigit():
raise ValueError(f"Invalid key: {key}, #{index} index must be an integer.")
data[name] = data.get(name, [])
if int(index) >= len(data[name]):
# Pad list with empty string on missing indices.
data[name].extend([""] * (int(index) - len(data[name]) + 1))
data[name][int(index)] = value
# Merge all input with <input_name>_#_<index> into a single dict.
for key, value in items:
if DICT_SPLIT not in key:
continue
name, index = key.split(DICT_SPLIT)
data[name] = data.get(name, {})
data[name][index] = value
# Merge all input with <input_name>_@_<index> into a single object.
for key, value in items:
if OBJC_SPLIT not in key:
continue
name, index = key.split(OBJC_SPLIT)
if name not in data or not isinstance(data[name], object):
data[name] = MockObject()
setattr(data[name], index, value)
return data
def _validate_node_input_credentials(
graph: GraphModel,
user_id: str,

View File

@ -1,55 +1,278 @@
from typing import cast
import pytest
from backend.executor.utils import merge_execution_input, parse_execution_output
from backend.util.mock import MockObject
def test_parse_execution_output():
# Test case for list extraction
# Test case for basic output
output = ("result", "value")
assert parse_execution_output(output, "result") == "value"
# Test case for list output
output = ("result", [10, 20, 30])
assert parse_execution_output(output, "result_$_1") == 20
assert parse_execution_output(output, "result_$_3") is None
# Test case for dictionary extraction
output = ("config", {"key1": "value1", "key2": "value2"})
assert parse_execution_output(output, "config_#_key1") == "value1"
assert parse_execution_output(output, "config_#_key3") is None
# Test case for dict output
output = ("result", {"key1": "value1", "key2": "value2"})
assert parse_execution_output(output, "result_#_key1") == "value1"
# Test case for object extraction
# Test case for object output
class Sample:
attr1 = "value1"
attr2 = "value2"
def __init__(self):
self.attr1 = "value1"
self.attr2 = "value2"
output = ("object", Sample())
assert parse_execution_output(output, "object_@_attr1") == "value1"
assert parse_execution_output(output, "object_@_attr3") is None
output = ("result", Sample())
assert parse_execution_output(output, "result_@_attr1") == "value1"
# Test case for direct match
output = ("direct", "match")
assert parse_execution_output(output, "direct") == "match"
assert parse_execution_output(output, "nomatch") is None
# Test case for nested list output
output = ("result", [[1, 2], [3, 4]])
assert parse_execution_output(output, "result_$_0_$_1") == 2
assert parse_execution_output(output, "result_$_1_$_0") == 3
# Test case for list containing dict
output = ("result", [{"key1": "value1"}, {"key2": "value2"}])
assert parse_execution_output(output, "result_$_0_#_key1") == "value1"
assert parse_execution_output(output, "result_$_1_#_key2") == "value2"
# Test case for dict containing list
output = ("result", {"key1": [1, 2], "key2": [3, 4]})
assert parse_execution_output(output, "result_#_key1_$_1") == 2
assert parse_execution_output(output, "result_#_key2_$_0") == 3
# Test case for complex nested structure
class NestedSample:
def __init__(self):
self.attr1 = [1, 2]
self.attr2 = {"key": "value"}
output = ("result", [NestedSample(), {"key": [1, 2]}])
assert parse_execution_output(output, "result_$_0_@_attr1_$_1") == 2
assert parse_execution_output(output, "result_$_0_@_attr2_#_key") == "value"
assert parse_execution_output(output, "result_$_1_#_key_$_0") == 1
# Test case for non-existent paths
output = ("result", [1, 2, 3])
assert parse_execution_output(output, "result_$_5") is None
assert parse_execution_output(output, "result_#_key") is None
assert parse_execution_output(output, "result_@_attr") is None
assert parse_execution_output(output, "wrong_name") is None
# Test cases for delimiter processing order
# Test case 1: List -> Dict -> List
output = ("result", [[{"key": [1, 2]}], [3, 4]])
assert parse_execution_output(output, "result_$_0_$_0_#_key_$_1") == 2
# Test case 2: Dict -> List -> Object
class NestedObj:
def __init__(self):
self.value = "nested"
output = ("result", {"key": [NestedObj(), 2]})
assert parse_execution_output(output, "result_#_key_$_0_@_value") == "nested"
# Test case 3: Object -> List -> Dict
class ParentObj:
def __init__(self):
self.items = [{"nested": "value"}]
output = ("result", ParentObj())
assert parse_execution_output(output, "result_@_items_$_0_#_nested") == "value"
# Test case 4: Complex nested structure with all types
class ComplexObj:
def __init__(self):
self.data = [{"items": [{"value": "deep"}]}]
output = ("result", {"key": [ComplexObj()]})
assert (
parse_execution_output(
output, "result_#_key_$_0_@_data_$_0_#_items_$_0_#_value"
)
== "deep"
)
# Test case 5: Invalid paths that should return None
output = ("result", [{"key": [1, 2]}])
assert parse_execution_output(output, "result_$_0_#_wrong_key") is None
assert parse_execution_output(output, "result_$_0_#_key_$_5") is None
assert parse_execution_output(output, "result_$_0_@_attr") is None
# Test case 6: Mixed delimiter types in wrong order
output = ("result", {"key": [1, 2]})
assert (
parse_execution_output(output, "result_#_key_$_1_@_attr") is None
) # Should fail at @_attr
assert (
parse_execution_output(output, "result_@_attr_$_0_#_key") is None
) # Should fail at @_attr
def test_merge_execution_input():
# Test case for merging list inputs
data = {"list_$_0": "a", "list_$_1": "b", "list_$_3": "d"}
merged_data = merge_execution_input(data)
assert merged_data["list"] == ["a", "b", "", "d"]
# Test case for basic list extraction
data = {
"list_$_0": "a",
"list_$_1": "b",
}
result = merge_execution_input(data)
assert "list" in result
assert result["list"] == ["a", "b"]
# Test case for merging dictionary inputs
data = {"dict_#_key1": "value1", "dict_#_key2": "value2"}
merged_data = merge_execution_input(data)
assert merged_data["dict"] == {"key1": "value1", "key2": "value2"}
# Test case for basic dict extraction
data = {
"dict_#_key1": "value1",
"dict_#_key2": "value2",
}
result = merge_execution_input(data)
assert "dict" in result
assert result["dict"] == {"key1": "value1", "key2": "value2"}
# Test case for merging object inputs
data = {"object_@_attr1": "value1", "object_@_attr2": "value2"}
merged_data = merge_execution_input(data)
assert hasattr(merged_data["object"], "attr1")
assert hasattr(merged_data["object"], "attr2")
assert merged_data["object"].attr1 == "value1"
assert merged_data["object"].attr2 == "value2"
# Test case for object extraction
class Sample:
def __init__(self):
self.attr1 = None
self.attr2 = None
# Test case for mixed inputs
data = {"list_$_0": "a", "dict_#_key1": "value1", "object_@_attr1": "value1"}
merged_data = merge_execution_input(data)
assert merged_data["list"] == ["a"]
assert merged_data["dict"] == {"key1": "value1"}
assert hasattr(merged_data["object"], "attr1")
assert merged_data["object"].attr1 == "value1"
data = {
"object_@_attr1": "value1",
"object_@_attr2": "value2",
}
result = merge_execution_input(data)
assert "object" in result
assert isinstance(result["object"], MockObject)
assert result["object"].attr1 == "value1"
assert result["object"].attr2 == "value2"
# Test case for nested list extraction
data = {
"nested_list_$_0_$_0": "a",
"nested_list_$_0_$_1": "b",
"nested_list_$_1_$_0": "c",
}
result = merge_execution_input(data)
assert "nested_list" in result
assert result["nested_list"] == [["a", "b"], ["c"]]
# Test case for list containing dict
data = {
"list_with_dict_$_0_#_key1": "value1",
"list_with_dict_$_0_#_key2": "value2",
"list_with_dict_$_1_#_key3": "value3",
}
result = merge_execution_input(data)
assert "list_with_dict" in result
assert result["list_with_dict"] == [
{"key1": "value1", "key2": "value2"},
{"key3": "value3"},
]
# Test case for dict containing list
data = {
"dict_with_list_#_key1_$_0": "value1",
"dict_with_list_#_key1_$_1": "value2",
"dict_with_list_#_key2_$_0": "value3",
}
result = merge_execution_input(data)
assert "dict_with_list" in result
assert result["dict_with_list"] == {
"key1": ["value1", "value2"],
"key2": ["value3"],
}
# Test case for complex nested structure
data = {
"complex_$_0_#_key1_$_0": "value1",
"complex_$_0_#_key1_$_1": "value2",
"complex_$_0_#_key2_@_attr1": "value3",
"complex_$_1_#_key3_$_0": "value4",
}
result = merge_execution_input(data)
assert "complex" in result
assert result["complex"][0]["key1"] == ["value1", "value2"]
assert isinstance(result["complex"][0]["key2"], MockObject)
assert result["complex"][0]["key2"].attr1 == "value3"
assert result["complex"][1]["key3"] == ["value4"]
# Test case for invalid list index
data = {"list_$_invalid": "value"}
with pytest.raises(ValueError, match="index must be an integer"):
merge_execution_input(data)
# Test cases for delimiter ordering
# Test case 1: List -> Dict -> List
data = {
"nested_$_0_#_key_$_0": "value1",
"nested_$_0_#_key_$_1": "value2",
}
result = merge_execution_input(data)
assert "nested" in result
assert result["nested"][0]["key"] == ["value1", "value2"]
# Test case 2: Dict -> List -> Object
data = {
"nested_#_key_$_0_@_attr": "value1",
"nested_#_key_$_1_@_attr": "value2",
}
result = merge_execution_input(data)
assert "nested" in result
assert isinstance(result["nested"]["key"][0], MockObject)
assert result["nested"]["key"][0].attr == "value1"
assert result["nested"]["key"][1].attr == "value2"
# Test case 3: Object -> List -> Dict
data = {
"nested_@_items_$_0_#_key": "value1",
"nested_@_items_$_1_#_key": "value2",
}
result = merge_execution_input(data)
assert "nested" in result
nested = result["nested"]
assert isinstance(nested, MockObject)
items = nested.items
assert isinstance(items, list)
assert items[0]["key"] == "value1"
assert items[1]["key"] == "value2"
# Test case 4: Complex nested structure with all types
data = {
"deep_#_key_$_0_@_data_$_0_#_items_$_0_#_value": "deep_value",
"deep_#_key_$_0_@_data_$_1_#_items_$_0_#_value": "another_value",
}
result = merge_execution_input(data)
assert "deep" in result
deep_key = result["deep"]["key"][0]
assert deep_key is not None
data0 = getattr(deep_key, "data", None)
assert isinstance(data0, list)
# Check items0
items0 = None
if len(data0) > 0 and isinstance(data0[0], dict) and "items" in data0[0]:
items0 = data0[0]["items"]
assert isinstance(items0, list)
items0 = cast(list, items0)
assert len(items0) > 0
assert isinstance(items0[0], dict)
assert items0[0]["value"] == "deep_value" # type: ignore
# Check items1
items1 = None
if len(data0) > 1 and isinstance(data0[1], dict) and "items" in data0[1]:
items1 = data0[1]["items"]
assert isinstance(items1, list)
items1 = cast(list, items1)
assert len(items1) > 0
assert isinstance(items1[0], dict)
assert items1[0]["value"] == "another_value" # type: ignore
# Test case 5: Mixed delimiter types in different orders
# the last one should replace the type
data = {
"mixed_$_0_#_key_@_attr": "value1", # List -> Dict -> Object
"mixed_#_key_$_0_@_attr": "value2", # Dict -> List -> Object
"mixed_@_attr_$_0_#_key": "value3", # Object -> List -> Dict
}
result = merge_execution_input(data)
assert "mixed" in result
assert result["mixed"].attr[0]["key"] == "value3"