commit
48451e305a
|
@ -1,3 +1,5 @@
|
|||
PINECONE_API_KEY=your-pinecone-api-key
|
||||
PINECONE_ENV=your-pinecone-region
|
||||
OPENAI_API_KEY=your-openai-api-key
|
||||
ELEVENLABS_API_KEY=your-elevenlabs-api-key
|
||||
SMART_LLM_MODEL="gpt-4"
|
||||
|
|
29
README.md
29
README.md
|
@ -140,6 +140,35 @@ export CUSTOM_SEARCH_ENGINE_ID="YOUR_CUSTOM_SEARCH_ENGINE_ID"
|
|||
|
||||
```
|
||||
|
||||
## 🌲 Pinecone API Key Setup
|
||||
|
||||
Pinecone enable a vector based memory so a vast memory can be stored and only relevant memories
|
||||
are loaded for the agent at any given time.
|
||||
|
||||
1. Go to app.pinecone.io and make an account if you don't already have one.
|
||||
2. Choose the `Starter` plan to avoid being charged.
|
||||
3. Find your API key and region under the default project in the left sidebar.
|
||||
|
||||
### Setting up environment variables
|
||||
For Windows Users:
|
||||
```
|
||||
setx PINECONE_API_KEY "YOUR_GOOGLE_API_KEY"
|
||||
export PINECONE_ENV="Your region" # something like: us-east4-gcp
|
||||
|
||||
```
|
||||
For macOS and Linux users:
|
||||
```
|
||||
export PINECONE_API_KEY="YOUR_GOOGLE_API_KEY"
|
||||
export PINECONE_ENV="Your region" # something like: us-east4-gcp
|
||||
|
||||
```
|
||||
|
||||
Or you can set them in the `.env` file.
|
||||
|
||||
## View Memory Usage
|
||||
|
||||
1. View memory usage by using the `--debug` flag :)
|
||||
|
||||
## 💀 Continuous Mode ⚠️
|
||||
Run the AI **without** user authorisation, 100% automated.
|
||||
Continuous mode is not recommended.
|
||||
|
|
|
@ -10,4 +10,5 @@ tiktoken==0.3.3
|
|||
gTTS==2.3.1
|
||||
docker
|
||||
duckduckgo-search
|
||||
google-api-python-client #(https://developers.google.com/custom-search/v1/overview)
|
||||
google-api-python-client #(https://developers.google.com/custom-search/v1/overview)
|
||||
pinecone-client==2.2.1
|
||||
|
|
|
@ -23,6 +23,19 @@ def create_chat_message(role, content):
|
|||
return {"role": role, "content": content}
|
||||
|
||||
|
||||
def generate_context(prompt, relevant_memory, full_message_history, model):
|
||||
current_context = [
|
||||
create_chat_message(
|
||||
"system", prompt), create_chat_message(
|
||||
"system", f"Permanent memory: {relevant_memory}")]
|
||||
|
||||
# Add messages from the full message history until we reach the token limit
|
||||
next_message_to_add_index = len(full_message_history) - 1
|
||||
insertion_index = len(current_context)
|
||||
# Count the currently used tokens
|
||||
current_tokens_used = token_counter.count_message_tokens(current_context, model)
|
||||
return next_message_to_add_index, current_tokens_used, insertion_index, current_context
|
||||
|
||||
|
||||
# TODO: Change debug from hardcode to argument
|
||||
def chat_with_ai(
|
||||
|
@ -41,7 +54,7 @@ def chat_with_ai(
|
|||
prompt (str): The prompt explaining the rules to the AI.
|
||||
user_input (str): The input from the user.
|
||||
full_message_history (list): The list of all messages sent between the user and the AI.
|
||||
permanent_memory (list): The list of items in the AI's permanent memory.
|
||||
permanent_memory (Obj): The memory object containing the permanent memory.
|
||||
token_limit (int): The maximum number of tokens allowed in the API call.
|
||||
|
||||
Returns:
|
||||
|
@ -53,18 +66,20 @@ def chat_with_ai(
|
|||
print(f"Token limit: {token_limit}")
|
||||
send_token_limit = token_limit - 1000
|
||||
|
||||
current_context = [
|
||||
create_chat_message(
|
||||
"system", prompt), create_chat_message(
|
||||
"system", f"Permanent memory: {permanent_memory}")]
|
||||
relevant_memory = permanent_memory.get_relevant(str(full_message_history[-5:]), 10)
|
||||
|
||||
# Add messages from the full message history until we reach the token limit
|
||||
next_message_to_add_index = len(full_message_history) - 1
|
||||
current_tokens_used = 0
|
||||
insertion_index = len(current_context)
|
||||
if debug:
|
||||
print('Memory Stats: ', permanent_memory.get_stats())
|
||||
|
||||
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
|
||||
prompt, relevant_memory, full_message_history, model)
|
||||
|
||||
while current_tokens_used > 2500:
|
||||
# remove memories until we are under 2500 tokens
|
||||
relevant_memory = relevant_memory[1:]
|
||||
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
|
||||
prompt, relevant_memory, full_message_history, model)
|
||||
|
||||
# Count the currently used tokens
|
||||
current_tokens_used = token_counter.count_message_tokens(current_context, model)
|
||||
current_tokens_used += token_counter.count_message_tokens([create_chat_message("user", user_input)], model) # Account for user input (appended later)
|
||||
|
||||
while next_message_to_add_index >= 0:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import browse
|
||||
import json
|
||||
import memory as mem
|
||||
from memory import PineconeMemory
|
||||
import datetime
|
||||
import agent_manager as agents
|
||||
import speak
|
||||
|
@ -52,6 +52,7 @@ def get_command(response):
|
|||
|
||||
|
||||
def execute_command(command_name, arguments):
|
||||
memory = PineconeMemory()
|
||||
try:
|
||||
if command_name == "google":
|
||||
|
||||
|
@ -62,11 +63,7 @@ def execute_command(command_name, arguments):
|
|||
else:
|
||||
return google_search(arguments["input"])
|
||||
elif command_name == "memory_add":
|
||||
return commit_memory(arguments["string"])
|
||||
elif command_name == "memory_del":
|
||||
return delete_memory(arguments["key"])
|
||||
elif command_name == "memory_ovr":
|
||||
return overwrite_memory(arguments["key"], arguments["string"])
|
||||
return memory.add(arguments["string"])
|
||||
elif command_name == "start_agent":
|
||||
return start_agent(
|
||||
arguments["name"],
|
||||
|
|
|
@ -4,6 +4,7 @@ from dotenv import load_dotenv
|
|||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class Singleton(type):
|
||||
"""
|
||||
Singleton metaclass for ensuring only one instance of a class.
|
||||
|
@ -49,11 +50,13 @@ class Config(metaclass=Singleton):
|
|||
self.google_api_key = os.getenv("GOOGLE_API_KEY")
|
||||
self.custom_search_engine_id = os.getenv("CUSTOM_SEARCH_ENGINE_ID")
|
||||
|
||||
self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
||||
self.pinecone_region = os.getenv("PINECONE_ENV")
|
||||
|
||||
# User agent headers to use when browsing web
|
||||
# Some websites might just completely deny request with an error code if no user agent was found.
|
||||
self.user_agent_header = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"}
|
||||
|
||||
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
|
@ -85,4 +88,10 @@ class Config(metaclass=Singleton):
|
|||
self.google_api_key = value
|
||||
|
||||
def set_custom_search_engine_id(self, value: str):
|
||||
self.custom_search_engine_id = value
|
||||
self.custom_search_engine_id = value
|
||||
|
||||
def set_pinecone_api_key(self, value: str):
|
||||
self.pinecone_api_key = value
|
||||
|
||||
def set_pinecone_region(self, value: str):
|
||||
self.pinecone_region = value
|
||||
|
|
|
@ -1,15 +1,13 @@
|
|||
CONSTRAINTS:
|
||||
|
||||
1. ~4000 word limit for memory. Your memory is short, so immediately save important information to long term memory and code to files.
|
||||
2. No user assistance
|
||||
3. Exclusively use the commands listed in double quotes e.g. "command name"
|
||||
1. ~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.
|
||||
2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.
|
||||
3. No user assistance
|
||||
4. Exclusively use the commands listed in double quotes e.g. "command name"
|
||||
|
||||
COMMANDS:
|
||||
|
||||
1. Google Search: "google", args: "input": "<search>"
|
||||
2. Memory Add: "memory_add", args: "string": "<string>"
|
||||
3. Memory Delete: "memory_del", args: "key": "<key>"
|
||||
4. Memory Overwrite: "memory_ovr", args: "key": "<key>", "string": "<string>"
|
||||
5. Browse Website: "browse_website", args: "url": "<url>", "question": "<what_you_want_to_find_on_website>"
|
||||
6. Start GPT Agent: "start_agent", args: "name": <name>, "task": "<short_task_desc>", "prompt": "<prompt>"
|
||||
7. Message GPT Agent: "message_agent", args: "key": "<key>", "message": "<message>"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import json
|
||||
import random
|
||||
import commands as cmd
|
||||
import memory as mem
|
||||
from memory import PineconeMemory
|
||||
import data
|
||||
import chat
|
||||
from colorama import Fore, Style
|
||||
|
@ -280,6 +280,13 @@ result = None
|
|||
# Make a constant:
|
||||
user_input = "Determine which next command to use, and respond using the format specified above:"
|
||||
|
||||
# Initialize memory and make sure it is empty.
|
||||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = PineconeMemory()
|
||||
memory.clear()
|
||||
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
|
||||
# Interaction Loop
|
||||
while True:
|
||||
# Send message to AI, get response
|
||||
|
@ -288,7 +295,7 @@ while True:
|
|||
prompt,
|
||||
user_input,
|
||||
full_message_history,
|
||||
mem.permanent_memory,
|
||||
memory,
|
||||
cfg.fast_token_limit) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
|
||||
|
||||
# print("assistant reply: "+assistant_reply)
|
||||
|
@ -349,6 +356,12 @@ while True:
|
|||
else:
|
||||
result = f"Command {command_name} returned: {cmd.execute_command(command_name, arguments)}"
|
||||
|
||||
memory_to_add = f"Assistant Reply: {assistant_reply} " \
|
||||
f"\nResult: {result} " \
|
||||
f"\nHuman Feedback: {user_input} "
|
||||
|
||||
memory.add(memory_to_add)
|
||||
|
||||
# Check if there's a result from the command append it to the message
|
||||
# history
|
||||
if result is not None:
|
||||
|
|
|
@ -1 +1,61 @@
|
|||
permanent_memory = []
|
||||
from config import Config, Singleton
|
||||
import pinecone
|
||||
import openai
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
def get_text_from_embedding(embedding):
|
||||
return openai.Embedding.retrieve(embedding, model="text-embedding-ada-002")["data"][0]["text"]
|
||||
|
||||
|
||||
class PineconeMemory(metaclass=Singleton):
|
||||
def __init__(self):
|
||||
pinecone_api_key = cfg.pinecone_api_key
|
||||
pinecone_region = cfg.pinecone_region
|
||||
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
|
||||
dimension = 1536
|
||||
metric = "cosine"
|
||||
pod_type = "p1"
|
||||
table_name = "auto-gpt"
|
||||
# this assumes we don't start with memory.
|
||||
# for now this works.
|
||||
# we'll need a more complicated and robust system if we want to start with memory.
|
||||
self.vec_num = 0
|
||||
if table_name not in pinecone.list_indexes():
|
||||
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
|
||||
self.index = pinecone.Index(table_name)
|
||||
|
||||
def add(self, data):
|
||||
vector = get_ada_embedding(data)
|
||||
# no metadata here. We may wish to change that long term.
|
||||
resp = self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})])
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}"
|
||||
self.vec_num += 1
|
||||
return _text
|
||||
|
||||
def get(self, data):
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def clear(self):
|
||||
self.index.delete(deleteAll=True)
|
||||
return "Obliviated"
|
||||
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
:param data: The data to compare to.
|
||||
:param num_relevant: The number of relevant data to return. Defaults to 5
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
results = self.index.query(query_embedding, top_k=num_relevant, include_metadata=True)
|
||||
sorted_results = sorted(results.matches, key=lambda x: x.score)
|
||||
return [str(item['metadata']["raw_text"]) for item in sorted_results]
|
||||
|
||||
def get_stats(self):
|
||||
return self.index.describe_index_stats()
|
||||
|
|
Loading…
Reference in New Issue