feat(global): errors logs are logged as debug level and activated with program argument 'debug'
parent
0e004f5c14
commit
43c006d71c
|
@ -112,13 +112,20 @@ python scripts/main.py
|
|||
2. After each of AUTO-GPT's actions, type "NEXT COMMAND" to authorise them to continue.
|
||||
3. To exit the program, type "exit" and press Enter.
|
||||
|
||||
### Logs
|
||||
You will find activity and error logs in the folder ```./logs```
|
||||
|
||||
To output debug logs:
|
||||
```
|
||||
python scripts/main.py --debug
|
||||
```
|
||||
|
||||
## 🗣️ Speech Mode
|
||||
|
||||
Use this to use TTS for Auto-GPT
|
||||
|
||||
```
|
||||
python scripts/main.py --speak
|
||||
|
||||
```
|
||||
|
||||
## 🔍 Google API Keys Configuration
|
||||
|
|
|
@ -4,6 +4,8 @@ from dotenv import load_dotenv
|
|||
from config import Config
|
||||
import token_counter
|
||||
from llm_utils import create_chat_completion
|
||||
from logger import logger
|
||||
import logging
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
@ -64,15 +66,12 @@ def chat_with_ai(
|
|||
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument
|
||||
# Reserve 1000 tokens for the response
|
||||
|
||||
if cfg.debug_mode:
|
||||
print(f"Token limit: {token_limit}")
|
||||
|
||||
logger.log(content=f"Token limit: {token_limit}", level=logging.DEBUG)
|
||||
send_token_limit = token_limit - 1000
|
||||
|
||||
relevant_memory = permanent_memory.get_relevant(str(full_message_history[-9:]), 10)
|
||||
|
||||
if cfg.debug_mode:
|
||||
print('Memory Stats: ', permanent_memory.get_stats())
|
||||
logger.log(content=f'Memory Stats: {permanent_memory.get_stats()}', level=logging.DEBUG)
|
||||
|
||||
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
|
||||
prompt, relevant_memory, full_message_history, model)
|
||||
|
@ -110,19 +109,17 @@ def chat_with_ai(
|
|||
# assert tokens_remaining >= 0, "Tokens remaining is negative. This should never happen, please submit a bug report at https://www.github.com/Torantulino/Auto-GPT"
|
||||
|
||||
# Debug print the current context
|
||||
if cfg.debug_mode:
|
||||
print(f"Token limit: {token_limit}")
|
||||
print(f"Send Token Count: {current_tokens_used}")
|
||||
print(f"Tokens remaining for response: {tokens_remaining}")
|
||||
print("------------ CONTEXT SENT TO AI ---------------")
|
||||
for message in current_context:
|
||||
# Skip printing the prompt
|
||||
if message["role"] == "system" and message["content"] == prompt:
|
||||
continue
|
||||
print(
|
||||
f"{message['role'].capitalize()}: {message['content']}")
|
||||
print()
|
||||
print("----------- END OF CONTEXT ----------------")
|
||||
logger.log(content=f"Token limit: {token_limit}", level=logging.DEBUG)
|
||||
logger.log(content=f"Send Token Count: {current_tokens_used}", level=logging.DEBUG)
|
||||
logger.log(content=f"Tokens remaining for response: {tokens_remaining}", level=logging.DEBUG)
|
||||
logger.log(content="------------ CONTEXT SENT TO AI ---------------", level=logging.DEBUG)
|
||||
for message in current_context:
|
||||
# Skip printing the prompt
|
||||
if message["role"] == "system" and message["content"] == prompt:
|
||||
continue
|
||||
logger.log(content=f"{message['role'].capitalize()}: {message['content']}", level=logging.DEBUG)
|
||||
logger.log(content="", level=logging.DEBUG)
|
||||
logger.log(content="----------- END OF CONTEXT ----------------", level=logging.DEBUG)
|
||||
|
||||
# TODO: use a model defined elsewhere, so that model can contain temperature and other settings we care about
|
||||
assistant_reply = create_chat_completion(
|
||||
|
|
|
@ -76,7 +76,6 @@ def fix_and_parse_json(
|
|||
|
||||
def fix_json(json_str: str, schema: str) -> str:
|
||||
"""Fix the given JSON string to make it parseable and fully compliant with the provided schema."""
|
||||
|
||||
# Try to fix the JSON using GPT:
|
||||
function_string = "def fix_json(json_str: str, schema:str=None) -> str:"
|
||||
args = [f"'''{json_str}'''", f"'''{schema}'''"]
|
||||
|
@ -92,12 +91,11 @@ def fix_json(json_str: str, schema: str) -> str:
|
|||
result_string = call_ai_function(
|
||||
function_string, args, description_string, model=cfg.fast_llm_model
|
||||
)
|
||||
if cfg.debug_mode:
|
||||
print("------------ JSON FIX ATTEMPT ---------------")
|
||||
print(f"Original JSON: {json_str}")
|
||||
print("-----------")
|
||||
print(f"Fixed JSON: {result_string}")
|
||||
print("----------- END OF FIX ATTEMPT ----------------")
|
||||
logger.log(content="------------ JSON FIX ATTEMPT ---------------", level=logging.DEBUG)
|
||||
logger.log(content=f"Original JSON: {json_str}", level=logging.DEBUG)
|
||||
logger.log(content="-----------", level=logging.DEBUG)
|
||||
logger.log(content=f"Fixed JSON: {result_string}", level=logging.DEBUG)
|
||||
logger.log(content="----------- END OF FIX ATTEMPT ----------------", level=logging.DEBUG)
|
||||
|
||||
try:
|
||||
json.loads(result_string) # just check the validity
|
||||
|
|
|
@ -0,0 +1,115 @@
|
|||
import logging
|
||||
import os
|
||||
import random
|
||||
import time
|
||||
from logging import LogRecord
|
||||
|
||||
from colorama import Style
|
||||
|
||||
import speak
|
||||
from config import Config
|
||||
from config import Singleton
|
||||
|
||||
import re
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
class Logger(metaclass=Singleton):
|
||||
def __init__(self):
|
||||
# create log directory if it doesn't exist
|
||||
log_dir = os.path.join('..', 'logs')
|
||||
if not os.path.exists(log_dir):
|
||||
os.makedirs(log_dir)
|
||||
|
||||
log_file = "activity.log"
|
||||
error_file = "error.log"
|
||||
|
||||
# Create a handler for INFO level logs
|
||||
self.console_handler = TypingConsoleHandler()
|
||||
self.console_handler.setLevel(logging.INFO)
|
||||
console_formatter = AutoGptFormatter('%(title_color)s %(message)s')
|
||||
self.console_handler.setFormatter(console_formatter)
|
||||
|
||||
# Info handler in activity.log
|
||||
self.file_handler = logging.FileHandler(os.path.join(log_dir, log_file))
|
||||
self.file_handler.setLevel(logging.INFO)
|
||||
info_formatter = AutoGptFormatter('%(asctime)s %(levelname)s %(title)s %(message_no_color)s')
|
||||
self.file_handler.setFormatter(info_formatter)
|
||||
|
||||
# Error handler error.log
|
||||
error_handler = logging.FileHandler(os.path.join(log_dir, error_file))
|
||||
error_handler.setLevel(logging.ERROR)
|
||||
error_formatter = AutoGptFormatter(
|
||||
'%(asctime)s %(levelname)s %(module)s:%(funcName)s:%(lineno)d %(title)s %(message_no_color)s')
|
||||
error_handler.setFormatter(error_formatter)
|
||||
|
||||
self.logger = logging.getLogger(__name__)
|
||||
self.logger.addHandler(self.console_handler)
|
||||
self.logger.addHandler(self.file_handler)
|
||||
self.logger.addHandler(error_handler)
|
||||
|
||||
def log(
|
||||
self,
|
||||
title='',
|
||||
title_color='',
|
||||
content='',
|
||||
speak_text=False,
|
||||
level=logging.INFO):
|
||||
if speak_text and cfg.speak_mode:
|
||||
speak.say_text(f"{title}. {content}")
|
||||
|
||||
if content:
|
||||
if isinstance(content, list):
|
||||
content = " ".join(content)
|
||||
else:
|
||||
content = ""
|
||||
|
||||
self.logger.log(level, content, extra={'title': title, 'color': title_color})
|
||||
|
||||
def set_level(self, level):
|
||||
self.logger.setLevel(level)
|
||||
self.console_handler.setLevel(level)
|
||||
self.file_handler.setLevel(level)
|
||||
|
||||
|
||||
class TypingConsoleHandler(logging.StreamHandler):
|
||||
def emit(self, record):
|
||||
min_typing_speed = 0.05
|
||||
max_typing_speed = 0.01
|
||||
|
||||
msg = self.format(record)
|
||||
try:
|
||||
words = msg.split()
|
||||
for i, word in enumerate(words):
|
||||
print(word, end="", flush=True)
|
||||
if i < len(words) - 1:
|
||||
print(" ", end="", flush=True)
|
||||
typing_speed = random.uniform(min_typing_speed, max_typing_speed)
|
||||
time.sleep(typing_speed)
|
||||
# type faster after each word
|
||||
min_typing_speed = min_typing_speed * 0.95
|
||||
max_typing_speed = max_typing_speed * 0.95
|
||||
print()
|
||||
except Exception:
|
||||
self.handleError(record)
|
||||
|
||||
|
||||
|
||||
|
||||
class AutoGptFormatter(logging.Formatter):
|
||||
def format(self, record: LogRecord) -> str:
|
||||
record.title_color = getattr(record, 'color') + getattr(record, 'title') + " " + Style.RESET_ALL
|
||||
if hasattr(record, 'msg'):
|
||||
record.message_no_color = remove_color_codes(getattr(record, 'msg'))
|
||||
else:
|
||||
record.message_no_color = ''
|
||||
return super().format(record)
|
||||
|
||||
|
||||
def remove_color_codes(s: str) -> str:
|
||||
ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
|
||||
return ansi_escape.sub('', s)
|
||||
|
||||
|
||||
logger = Logger()
|
|
@ -313,6 +313,10 @@ def parse_arguments():
|
|||
parser.add_argument('--gpt4only', action='store_true', help='Enable GPT4 Only Mode')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.debug:
|
||||
logger.log("Debug Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_debug_mode(True)
|
||||
|
||||
if args.continuous:
|
||||
print_to_console("Continuous Mode: ", Fore.RED, "ENABLED")
|
||||
print_to_console(
|
||||
|
@ -343,6 +347,7 @@ check_openai_api_key()
|
|||
cfg = Config()
|
||||
logger = configure_logging()
|
||||
parse_arguments()
|
||||
logger.set_level(logging.DEBUG if cfg.debug_mode else logging.INFO)
|
||||
ai_name = ""
|
||||
prompt = construct_prompt()
|
||||
# print(prompt)
|
||||
|
|
Loading…
Reference in New Issue