From 210c140a0f56148f7f1ca50bcc9969c95fcd6925 Mon Sep 17 00:00:00 2001 From: Toran Bruce Richards Date: Mon, 30 Sep 2024 14:05:26 +0100 Subject: [PATCH] feat(blocks): Add AI List Generator block (#8221) Add AIListGeneratorBlock class --- .../backend/backend/blocks/llm.py | 231 ++++++++++++++++++ 1 file changed, 231 insertions(+) diff --git a/autogpt_platform/backend/backend/blocks/llm.py b/autogpt_platform/backend/backend/blocks/llm.py index f510d680f..868244cd8 100644 --- a/autogpt_platform/backend/backend/blocks/llm.py +++ b/autogpt_platform/backend/backend/blocks/llm.py @@ -1,3 +1,4 @@ +import ast import logging from enum import Enum from json import JSONDecodeError @@ -209,6 +210,7 @@ class AIStructuredResponseGeneratorBlock(Block): raise ValueError(f"Unsupported LLM provider: {provider}") def run(self, input_data: Input, **kwargs) -> BlockOutput: + logger.debug(f"Calling LLM with input data: {input_data}") prompt = [] def trim_prompt(s: str) -> str: @@ -622,3 +624,232 @@ class AIConversationBlock(Block): yield "response", response except Exception as e: yield "error", f"Error calling LLM: {str(e)}" + + +class AIListGeneratorBlock(Block): + class Input(BlockSchema): + focus: str | None = SchemaField( + description="The focus of the list to generate.", + placeholder="The top 5 most interesting news stories in the data.", + default=None, + advanced=False, + ) + source_data: str | None = SchemaField( + description="The data to generate the list from.", + placeholder="News Today: Humans land on Mars: Today humans landed on mars. -- AI wins Nobel Prize: AI wins Nobel Prize for solving world hunger. -- New AI Model: A new AI model has been released.", + default=None, + advanced=False, + ) + model: LlmModel = SchemaField( + title="LLM Model", + default=LlmModel.GPT4_TURBO, + description="The language model to use for generating the list.", + advanced=True, + ) + api_key: BlockSecret = SecretField(value="") + max_retries: int = SchemaField( + default=3, + description="Maximum number of retries for generating a valid list.", + ge=1, + le=5, + ) + + class Output(BlockSchema): + generated_list: List[str] = SchemaField(description="The generated list.") + list_item: str = SchemaField( + description="Each individual item in the list.", + ) + error: str = SchemaField( + description="Error message if the list generation failed." + ) + + def __init__(self): + super().__init__( + id="9c0b0450-d199-458b-a731-072189dd6593", + description="Generate a Python list based on the given prompt using a Large Language Model (LLM).", + categories={BlockCategory.AI, BlockCategory.TEXT}, + input_schema=AIListGeneratorBlock.Input, + output_schema=AIListGeneratorBlock.Output, + test_input={ + "focus": "planets", + "source_data": ( + "Zylora Prime is a glowing jungle world with bioluminescent plants, " + "while Kharon-9 is a harsh desert planet with underground cities. " + "Vortexia's constant storms power floating cities, and Oceara is a water-covered world home to " + "intelligent marine life. On icy Draknos, ancient ruins lie buried beneath its frozen landscape, " + "drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of " + "fictional worlds." + ), + "model": LlmModel.GPT4_TURBO, + "api_key": "test_api_key", + "max_retries": 3, + }, + test_output=[ + ( + "generated_list", + ["Zylora Prime", "Kharon-9", "Vortexia", "Oceara", "Draknos"], + ), + ("list_item", "Zylora Prime"), + ("list_item", "Kharon-9"), + ("list_item", "Vortexia"), + ("list_item", "Oceara"), + ("list_item", "Draknos"), + ], + test_mock={ + "llm_call": lambda input_data: { + "response": "['Zylora Prime', 'Kharon-9', 'Vortexia', 'Oceara', 'Draknos']" + }, + }, + ) + + @staticmethod + def llm_call( + input_data: AIStructuredResponseGeneratorBlock.Input, + ) -> dict[str, str]: + llm_block = AIStructuredResponseGeneratorBlock() + for output_name, output_data in llm_block.run(input_data): + if output_name == "response": + logger.debug(f"Received response from LLM: {output_data}") + return output_data + raise ValueError("Failed to get a response from the LLM.") + + @staticmethod + def string_to_list(string): + """ + Converts a string representation of a list into an actual Python list object. + """ + logger.debug(f"Converting string to list. Input string: {string}") + try: + # Use ast.literal_eval to safely evaluate the string + python_list = ast.literal_eval(string) + if isinstance(python_list, list): + logger.debug(f"Successfully converted string to list: {python_list}") + return python_list + else: + logger.error(f"The provided string '{string}' is not a valid list") + raise ValueError(f"The provided string '{string}' is not a valid list.") + except (SyntaxError, ValueError) as e: + logger.error(f"Failed to convert string to list: {e}") + raise ValueError("Invalid list format. Could not convert to list.") + + def run(self, input_data: Input, **kwargs) -> BlockOutput: + logger.debug(f"Starting AIListGeneratorBlock.run with input data: {input_data}") + + # Check for API key + api_key_check = ( + input_data.api_key.get_secret_value() + or LlmApiKeys[input_data.model.metadata.provider].get_secret_value() + ) + if not api_key_check: + logger.error("No LLM API key provided.") + yield "error", "No LLM API key provided." + return + + # Prepare the system prompt + sys_prompt = """You are a Python list generator. Your task is to generate a Python list based on the user's prompt. + |Respond ONLY with a valid python list. + |The list can contain strings, numbers, or nested lists as appropriate. + |Do not include any explanations or additional text. + + |Valid Example string formats: + + |Example 1: + |``` + |['1', '2', '3', '4'] + |``` + + |Example 2: + |``` + |[['1', '2'], ['3', '4'], ['5', '6']] + |``` + + |Example 3: + |``` + |['1', ['2', '3'], ['4', ['5', '6']]] + |``` + + |Example 4: + |``` + |['a', 'b', 'c'] + |``` + + |Example 5: + |``` + |['1', '2.5', 'string', 'True', ['False', 'None']] + |``` + + |Do not include any explanations or additional text, just respond with the list in the format specified above. + """ + # If a focus is provided, add it to the prompt + if input_data.focus: + prompt = f"Generate a list with the following focus:\n\n\n{input_data.focus}" + else: + # If there's source data + if input_data.source_data: + prompt = "Extract the main focus of the source data to a list.\ni.e if the source data is a news website, the focus would be the news stories rather than the social links in the footer." + else: + # No focus or source data provided, generat a random list + prompt = "Generate a random list." + + # If the source data is provided, add it to the prompt + if input_data.source_data: + prompt += f"\n\nUse the following source data to generate the list from:\n\n\n\n{input_data.source_data}\n\nDo not invent fictional data that is not present in the source data." + # Else, tell the LLM to synthesize the data + else: + prompt += "\n\nInvent the data to generate the list from." + + for attempt in range(input_data.max_retries): + try: + logger.debug("Calling LLM") + llm_response = self.llm_call( + AIStructuredResponseGeneratorBlock.Input( + sys_prompt=sys_prompt, + prompt=prompt, + api_key=input_data.api_key, + model=input_data.model, + expected_format={}, # Do not use structured response + ) + ) + + logger.debug(f"LLM response: {llm_response}") + + # Extract Response string + response_string = llm_response["response"] + logger.debug(f"Response string: {response_string}") + + # Convert the string to a Python list + logger.debug("Converting string to Python list") + parsed_list = self.string_to_list(response_string) + logger.debug(f"Parsed list: {parsed_list}") + + # If we reach here, we have a valid Python list + logger.debug("Successfully generated a valid Python list") + yield "generated_list", parsed_list + + # Yield each item in the list + for item in parsed_list: + yield "list_item", item + return + + except Exception as e: + logger.error(f"Error in attempt {attempt + 1}: {str(e)}") + if attempt == input_data.max_retries - 1: + logger.error( + f"Failed to generate a valid Python list after {input_data.max_retries} attempts" + ) + yield "error", f"Failed to generate a valid Python list after {input_data.max_retries} attempts. Last error: {str(e)}" + else: + # Add a retry prompt + logger.debug("Preparing retry prompt") + prompt = f""" + The previous attempt failed due to `{e}` + Generate a valid Python list based on the original prompt. + Remember to respond ONLY with a valid Python list as per the format specified earlier. + Original prompt: + ```{prompt}``` + + Respond only with the list in the format specified with no commentary or apologies. + """ + logger.debug(f"Retry prompt: {prompt}") + + logger.debug("AIListGeneratorBlock.run completed")