Merge branch 'master' of github.com:Significant-Gravitas/Auto-GPT
commit
0e51b12d61
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/LuisLechugaRuiz/AwareAgent",
|
||||
"timestamp": "2023-10-17T14:10:03.198917",
|
||||
"commit_hash_to_benchmark": "1eadc64dc0a693c7c9de77ddaef857f3a36f7950",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/xpineda/AutoGPT_xabyvng.git",
|
||||
"timestamp": "2023-10-20T09:21:48.837635",
|
||||
"commit_hash_to_benchmark": "2187f66149ffa4bb99f9ca6a11b592fe4d683791",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/emads7/AutoGPT.git",
|
||||
"timestamp": "2023-10-19T15:06:37.481038",
|
||||
"commit_hash_to_benchmark": "4b1e8f6e8b4186ec6563301c146fbf3425f92715",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/gabenitez/AutoGPT",
|
||||
"timestamp": "2023-10-19T22:00:47.453159",
|
||||
"commit_hash_to_benchmark": "b4588f6425912316e1512391e4392ca30d61e144",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/xpineda/AutoGPT_xabyvng.git",
|
||||
"timestamp": "2023-10-20T09:26:07.885410",
|
||||
"commit_hash_to_benchmark": "2187f66149ffa4bb99f9ca6a11b592fe4d683791",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/Umar-Azam/AutoGPT-ResearchAgent",
|
||||
"timestamp": "2023-10-20T06:08:12.933685",
|
||||
"commit_hash_to_benchmark": "9219bfba0e028a557109b8e39c0fd91c1df243f8",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/ugyuji/AutoGPT",
|
||||
"timestamp": "2023-10-20T04:42:28.397067",
|
||||
"commit_hash_to_benchmark": "052802ff8d9354f23620eb8b6a5fd68cda7e5c0e",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/JovanKanevche/AutoGPT",
|
||||
"timestamp": "2023-10-19T17:04:49.626683",
|
||||
"commit_hash_to_benchmark": "4b1e8f6e8b4186ec6563301c146fbf3425f92715",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/131250208/AutoGPT_YC",
|
||||
"timestamp": "2023-10-20T07:42:11.493899",
|
||||
"commit_hash_to_benchmark": "9219bfba0e028a557109b8e39c0fd91c1df243f8",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/jiezhangGt/AutoGPT",
|
||||
"timestamp": "2023-10-20T03:02:17.342168",
|
||||
"commit_hash_to_benchmark": "4b1e8f6e8b4186ec6563301c146fbf3425f92715",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/jiezhangGt/AutoGPT",
|
||||
"timestamp": "2023-10-20T04:04:28.198603",
|
||||
"commit_hash_to_benchmark": "4b1e8f6e8b4186ec6563301c146fbf3425f92715",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/albags/AutoGPT.git",
|
||||
"timestamp": "2023-10-19T11:30:12.759675",
|
||||
"commit_hash_to_benchmark": "4b1e8f6e8b4186ec6563301c146fbf3425f92715",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/banderson12/AutoGPT",
|
||||
"timestamp": "2023-10-19T20:13:23.530323",
|
||||
"commit_hash_to_benchmark": "b4588f6425912316e1512391e4392ca30d61e144",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/w6m6/kkgpt",
|
||||
"timestamp": "2023-10-20T08:29:25.708364",
|
||||
"commit_hash_to_benchmark": "052802ff8d9354f23620eb8b6a5fd68cda7e5c0e",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/ldnvnbl/AutoGPT",
|
||||
"timestamp": "2023-10-20T09:37:16.860422",
|
||||
"commit_hash_to_benchmark": "2187f66149ffa4bb99f9ca6a11b592fe4d683791",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/Nilllas/AutoGPT",
|
||||
"timestamp": "2023-10-20T11:27:15.343842",
|
||||
"commit_hash_to_benchmark": "2187f66149ffa4bb99f9ca6a11b592fe4d683791",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"github_repo_url": "https://github.com/FIresInWind/AutoGPT",
|
||||
"timestamp": "2023-10-19T15:14:59.786203",
|
||||
"commit_hash_to_benchmark": "4b1e8f6e8b4186ec6563301c146fbf3425f92715",
|
||||
"branch_to_benchmark": "master"
|
||||
}
|
|
@ -22,10 +22,3 @@ The getting started [tutorial series](https://aiedge.medium.com/autogpt-forge-e3
|
|||
4. [AutoGPT Forge: Crafting Intelligent Agent Logic](https://medium.com/@aiedge/autogpt-forge-crafting-intelligent-agent-logic-bc5197b14cb4)
|
||||
|
||||
|
||||
Coming soon:
|
||||
|
||||
|
||||
3. Interacting with and Benchmarking your Agent
|
||||
4. Abilities
|
||||
5. The Planning Loop
|
||||
6. Memories
|
||||
|
|
|
@ -1,37 +0,0 @@
|
|||
# Harnessing the Power of Test-Driven Development with AGBenchmark
|
||||
|
||||
## Introduction
|
||||
- Understanding Test-Driven Development (TDD)
|
||||
- Importance of Benchmarking in Agent Development
|
||||
|
||||
## Section 1: Introduction to AGBenchmark
|
||||
- Overview of AGBenchmark
|
||||
- Setting up AGBenchmark in the Forge Environment
|
||||
|
||||
## Section 2: Benchmarking with AGBenchmark
|
||||
- Understanding Benchmark Categories and Tests
|
||||
- Using AGBenchmark Commands to List and Start Tests
|
||||
|
||||
## Section 3: Writing Tests for Your Agent
|
||||
- Creating Benchmark Tests
|
||||
- Structuring Test Cases and Scenarios
|
||||
|
||||
## Section 4: Running and Analyzing Benchmark Tests
|
||||
- Executing Benchmark Tests using CLI
|
||||
- Analyzing Benchmark Results and Feedback
|
||||
|
||||
## Section 5: Continuous Benchmarking
|
||||
- Integrating Benchmarking into Development Workflow
|
||||
- Automating Benchmark Testing
|
||||
|
||||
## Conclusion
|
||||
- Recap of the Tutorial
|
||||
- Enhancing Your Agent through Continuous Benchmarking
|
||||
|
||||
## Additional Resources
|
||||
- Links to AGBenchmark Documentation
|
||||
- Community Forums and Discussions on Benchmarking
|
||||
|
||||
## Appendix
|
||||
- Troubleshooting Common Benchmarking Issues
|
||||
- Glossary of Benchmarking Terms
|
|
@ -1,59 +0,0 @@
|
|||
# Ability Acquisition: Enhancing Your Agent's Capabilities
|
||||
|
||||
## Introduction
|
||||
- Understanding the Importance of Ability Acquisition
|
||||
- The Concept of Abilities in AutoGPT
|
||||
|
||||
## Section 1: Identifying Necessary Abilities
|
||||
- Analyzing the Requirements for Your Agent
|
||||
- Categorizing Abilities: Core vs. Supplementary
|
||||
|
||||
## Section 2: Developing Abilities for Your Agent
|
||||
- Integrating Existing Abilities from the Forge
|
||||
- Developing Custom Abilities: A Step-by-step Guide
|
||||
|
||||
## Section 3: Implementing and Executing Abilities
|
||||
- Utilizing the Agent Protocol for Ability Implementation
|
||||
- Executing Abilities: Task and Step Execution
|
||||
- Example: Developing and Executing an Ability using Task and Step Schemas
|
||||
|
||||
## Section 4: Encoding Abilities in Prompts for LLM Selection
|
||||
- Understanding the Concept of Prompt Engineering
|
||||
- Strategies for Effective Ability Encoding in Prompts
|
||||
- Practical Examples: Encoding Various Abilities in Prompts
|
||||
|
||||
## Section 5: Testing and Debugging Abilities
|
||||
- Employing Test-Driven Development for Ability Testing
|
||||
- Debugging Common Issues in Ability Implementation
|
||||
|
||||
## Conclusion
|
||||
- Recap of the Tutorial
|
||||
- Preparing Your Agent for Ability Integration and Enhancement
|
||||
|
||||
## Additional Resources
|
||||
|
||||
From **The Rise and Potential of Large Language Model Based Agents: A Survey** *Zhiheng Xi (Fudan University) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.14497)] [[code](https://github.com/woooodyy/llm-agent-paper-list)]
|
||||
### Research Papers
|
||||
- [2023/07] **ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs.** *Yujia Qin et al. arXiv.* [[paper](https://arxiv.org/abs/2307.16789)] [[code](https://github.com/openbmb/toolbench)] [[dataset](https://paperswithcode.com/dataset/toolbench)]
|
||||
- [2023/05] **Large Language Models as Tool Makers.** *Tianle Cai et al. arXiv.* [[paper](https://arxiv.org/abs/2305.17126)] [[code](https://github.com/ctlllll/llm-toolmaker)]
|
||||
- [2023/05] **CREATOR: Disentangling Abstract and Concrete Reasonings of Large Language Models through Tool Creation.** *Cheng Qian et al. arXiv.* [[paper](https://arxiv.org/abs/2305.14318)]
|
||||
- [2023/04] **Tool Learning with Foundation Models.** *Yujia Qin et al. arXiv.* [[paper](https://arxiv.org/abs/2304.08354)] [[code](https://github.com/openbmb/bmtools)]
|
||||
- [2023/04] **ChemCrow: Augmenting large-language models with chemistry tools.** *Andres M Bran (Laboratory of Artificial Chemical Intelligence, ISIC, EPFL) et al. arXiv.* [[paper](https://arxiv.org/abs/2304.05376)] [[code](https://github.com/ur-whitelab/chemcrow-public)]
|
||||
- [2023/04] **GeneGPT: Augmenting Large Language Models with Domain Tools for Improved Access to Biomedical Information.** *Qiao Jin, Yifan Yang, Qingyu Chen, Zhiyong Lu. arXiv.* [[paper](https://arxiv.org/abs/2304.09667)] [[code](https://github.com/ncbi/GeneGPT)]
|
||||
- [2023/04] **OpenAGI: When LLM Meets Domain Experts.** *Yingqiang Ge et al. arXiv.* [[paper](https://arxiv.org/abs/2304.04370)] [[code](https://github.com/agiresearch/openagi)]
|
||||
- [2023/03] **HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face.** *Yongliang Shen et al. arXiv.* [[paper](https://arxiv.org/abs/2303.17580)] [[code](https://github.com/microsoft/JARVIS)]
|
||||
- [2023/03] **Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models.** *Chenfei Wu et al. arXiv.* [[paper](https://arxiv.org/abs/2303.04671)] [[code](https://github.com/microsoft/visual-chatgpt)]
|
||||
- [2023/02] **Augmented Language Models: a Survey.** *Grégoire Mialon et al. arXiv.* [[paper](https://arxiv.org/abs/2302.07842)]
|
||||
- [2023/02] **Toolformer: Language Models Can Teach Themselves to Use Tools.** *Timo Schick et al. arXiv.* [[paper](https://arxiv.org/abs/2302.04761)]
|
||||
- [2022/05] **TALM: Tool Augmented Language Models.** *Aaron Parisi et al. arXiv.* [[paper](https://arxiv.org/abs/2205.12255)]
|
||||
- [2022/05] **MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning.** *Ehud Karpas et al. arXiv.* [[paper](https://arxiv.org/abs/2205.00445)]
|
||||
- [2022/04] **Do As I Can, Not As I Say: Grounding Language in Robotic Affordances.** *Michael Ahn et al. arXiv.* [[paper](https://arxiv.org/abs/2204.01691)]
|
||||
- [2021/12] **WebGPT: Browser-assisted question-answering with human feedback.** *Reiichiro Nakano et al. arXiv.* [[paper](https://arxiv.org/abs/2112.09332)]
|
||||
- [2021/07] **Evaluating Large Language Models Trained on Code.** *Mark Chen et al. arXiv.* [[paper](https://arxiv.org/abs/2107.03374)] [[code](https://github.com/openai/human-eval)]
|
||||
|
||||
|
||||
|
||||
## Appendix
|
||||
- Examples of Ability Implementations
|
||||
- Glossary of Ability-Related Terms
|
||||
|
|
@ -1,80 +0,0 @@
|
|||
# Mastering the Agent Planning Loop: Strategies for Effective Development
|
||||
|
||||
## Introduction
|
||||
- Understanding the Agent Planning Loop
|
||||
- Significance of Effective Planning in Agent Development
|
||||
|
||||
## Section 1: Concepts of Agent Planning Loop
|
||||
- The Structure of an Agent Planning Loop
|
||||
- Key Components and Functions
|
||||
|
||||
## Section 2: Developing an Effective Planning Strategy
|
||||
- Setting Goals and Objectives
|
||||
- Identifying Tasks and Steps within the Planning Loop
|
||||
|
||||
## Section 3: Implementing the Planning Loop
|
||||
- Coding the Planning Loop in the Forge Environment
|
||||
- Utilizing the Agent Protocol APIs
|
||||
|
||||
## Section 4: Testing and Optimization
|
||||
- Test-Driven Development of the Planning Loop
|
||||
- Optimizing the Planning Loop for Better Performance
|
||||
|
||||
## Section 5: Best Practices
|
||||
- Tips for Effective Planning Loop Implementation
|
||||
- Common Pitfalls to Avoid
|
||||
|
||||
## Conclusion
|
||||
- Recap of the Tutorial
|
||||
- Leveraging the Planning Loop for Advanced Agent Development
|
||||
|
||||
## Additional Resources
|
||||
|
||||
From **The Rise and Potential of Large Language Model Based Agents: A Survey** *Zhiheng Xi (Fudan University) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.14497)] [[code](https://github.com/woooodyy/llm-agent-paper-list)]
|
||||
|
||||
### Reasoning
|
||||
|
||||
- [2023/05] **Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement.** *Zhiheng Xi (Fudan University) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.14497)] [[code](https://github.com/woooodyy/self-polish)]
|
||||
|
||||
- [2023-03] **Large Language Models are Zero-Shot Reasoners.** *Takeshi Kojima (The University of Tokyo) et al. arXiv.* [[paper](https://arxiv.org/abs/2205.11916)][[code](https://github.com/kojima-takeshi188/zero_shot_cot)]
|
||||
|
||||
- [2023/03] **Self-Refine: Iterative Refinement with Self-Feedback.** *Aman Madaan (Carnegie Mellon University) et al. arXiv.* [[paper](https://arxiv.org/abs/2303.17651)] [[code](https://github.com/madaan/self-refine)]
|
||||
|
||||
- [2022/05] **Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning.** *Antonia Creswell (DeepMind) et al. arXiv.* [[paper](https://arxiv.org/abs/2205.09712)]
|
||||
|
||||
- [2022/03] **Self-Consistency Improves Chain of Thought Reasoning in Language Models.** *Xuezhi Wang(Google Research) et al. arXiv.* [[paper](https://arxiv.org/abs/2203.11171)] [[code](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bart)]
|
||||
|
||||
- [2022/01] **Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.** *Jason Wei (Google Research,) et al. arXiv.* [[paper](https://arxiv.org/abs/2201.11903)]
|
||||
|
||||
|
||||
### Planning
|
||||
|
||||
#### Plan formulation
|
||||
|
||||
- [2023/05] **Tree of Thoughts: Deliberate Problem Solving with Large Language Models.** *Shunyu Yao (Princeton University) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.10601)] [[code](https://github.com/princeton-nlp/tree-of-thought-llm)]
|
||||
- [2023/05] **Plan, Eliminate, and Track -- Language Models are Good Teachers for Embodied Agents.** *Yue Wu(Carnegie Mellon University) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.02412)]
|
||||
- [2023/05] **Reasoning with Language Model is Planning with World Model.** *Shibo Hao (UC San Diego) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.14992)] [[code](https://github.com/Ber666/RAP)]
|
||||
- [2023/05] **SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks.** *Bill Yuchen Lin (Allen Institute for Artificial Intelligence) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.17390)] [[code](https://github.com/yuchenlin/swiftsage)]
|
||||
- [2023/04] **LLM+P: Empowering Large Language Models with Optimal Planning Proficiency.** *Bo Liu (University of Texas at Austin) et al. arXiv.* [[paper](https://arxiv.org/abs/2304.11477)] [[code](https://github.com/Cranial-XIX/llm-pddl)]
|
||||
- [2023/03] **HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face.** *Yongliang Shen (Microsoft Research Asia) et al. arXiv.* [[paper](https://arxiv.org/abs/2303.17580)] [[code](https://github.com/microsoft/JARVIS)]
|
||||
- [2023/02] **Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents.** *ZiHao Wang (Peking University) et al. arXiv.* [[paper](https://arxiv.org/abs/2302.01560)] [[code](https://github.com/CraftJarvis/MC-Planner)]
|
||||
- [2022/05] **Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.** *Denny Zhou (Google Research) et al. arXiv.* [[paper](https://arxiv.org/abs/2205.10625)]
|
||||
- [2022/05] **MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning.** *Ehud Karpas (AI21 Labs) et al. arXiv.* [[paper](https://arxiv.org/abs/2205.00445)]
|
||||
- [2022/04] **Do As I Can, Not As I Say: Grounding Language in Robotic Affordances.** *Michael Ahn (Robotics at Google) et al. arXiv.* [[paper](https://arxiv.org/abs/2204.01691)]
|
||||
- [2023/05] **Agents: An Open-source Framework for Autonomous Language Agents.** Wangchunshu Zhou (AIWaves) et al. arXiv.* [[paper](https://arxiv.org/pdf/2309.07870.pdf)] [[code](https://github.com/aiwaves-cn/agents)]
|
||||
|
||||
|
||||
#### Plan reflection
|
||||
|
||||
- [2023/08] **SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step Reasoning.** *Ning Miao (University of Oxford) et al. arXiv.* [[paper](https://arxiv.org/abs/2308.00436)] [[code](https://github.com/NingMiao/SelfCheck)]
|
||||
- [2023/05] **ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on Chat-based Large Language Models.** *Zhipeng Chen (Renmin University of China) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.14323)] [[code](https://github.com/RUCAIBOX/ChatCoT)]
|
||||
- [2023/05] **Voyager: An Open-Ended Embodied Agent with Large Language Models.** *Guanzhi Wang (NVIDA) et al. arXiv.* [[paper](https://arxiv.org/abs/2305.16291)] [[code](https://voyager.minedojo.org/)]
|
||||
- [2023/03] **Chat with the Environment: Interactive Multimodal Perception Using Large Language Models.** *Xufeng Zhao (University Hamburg) et al. arXiv.* [[paper](https://arxiv.org/abs/2303.08268)] [[code](https://matcha-model.github.io/)]
|
||||
- [2022/12] **LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models.** *Chan Hee Song (The Ohio State University) et al. arXiv.* [[paper](https://arxiv.org/abs/2212.04088)] [[code](https://dki-lab.github.io/LLM-Planner/)]
|
||||
- [2022/10] **ReAct: Synergizing Reasoning and Acting in Language Models.** *Shunyu Yao ( Princeton University) et al. arXiv.* [[paper](https://arxiv.org/abs/2210.03629)] [[code](https://react-lm.github.io/)]
|
||||
- [2022/07] **Inner Monologue: Embodied Reasoning through Planning with Language Models.** *Wenlong Huang (Robotics at Google) et al. arXiv.* [[paper](https://arxiv.org/abs/2207.05608)] [[code](https://innermonologue.github.io/)]
|
||||
- [2021/10] **AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts.** *Tongshuang Wu (University of Washington) et al. arXiv.* [[paper](https://arxiv.org/abs/2110.01691)]
|
||||
|
||||
## Appendix
|
||||
- Example Planning Loop Implementations
|
||||
- Glossary of Planning Loop Terms
|
|
@ -17,8 +17,7 @@
|
|||
"output.txt"
|
||||
],
|
||||
"should_contain": [
|
||||
"Scotland",
|
||||
"scotland"
|
||||
"cotland"
|
||||
],
|
||||
"should_not_contain": []
|
||||
},
|
Loading…
Reference in New Issue