Code review changes
parent
54cbf1cae1
commit
011699e6a1
|
@ -8,4 +8,4 @@ scripts/auto_gpt_workspace/*
|
|||
*.mpeg
|
||||
.env
|
||||
last_run_ai_settings.yaml
|
||||
outputs/*
|
||||
outputs/*
|
|
@ -2,7 +2,7 @@ FROM python:3.11
|
|||
|
||||
WORKDIR /app
|
||||
COPY scripts/ /app
|
||||
COPY requirements.txt /app/requirements.txt
|
||||
|
||||
RUN pip install -r requirements.txt
|
||||
|
||||
CMD ["python", "main.py"]
|
||||
|
|
|
@ -13,7 +13,6 @@ class AIConfig:
|
|||
# Soon this will go in a folder where it remembers more stuff about the run(s)
|
||||
SAVE_FILE = "last_run_ai_settings.yaml"
|
||||
|
||||
|
||||
@classmethod
|
||||
def load(cls, config_file=SAVE_FILE):
|
||||
"""Load variables from yaml file if it exists, otherwise use defaults."""
|
||||
|
@ -29,7 +28,6 @@ class AIConfig:
|
|||
|
||||
return cls(ai_name, ai_role, ai_goals)
|
||||
|
||||
|
||||
def save(self, config_file=SAVE_FILE):
|
||||
"""Save variables to yaml file."""
|
||||
config = {"ai_name": self.ai_name, "ai_role": self.ai_role, "ai_goals": self.ai_goals}
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import List, Optional
|
||||
from json import dumps
|
||||
import json
|
||||
from config import Config
|
||||
from call_ai_function import call_ai_function
|
||||
from json_parser import fix_and_parse_json
|
||||
|
@ -23,7 +23,7 @@ def improve_code(suggestions: List[str], code: str) -> str:
|
|||
function_string = (
|
||||
"def generate_improved_code(suggestions: List[str], code: str) -> str:"
|
||||
)
|
||||
args = [dumps(suggestions), code]
|
||||
args = [json.dumps(suggestions), code]
|
||||
description_string = """Improves the provided code based on the suggestions provided, making no other changes."""
|
||||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
|
@ -36,7 +36,7 @@ def write_tests(code: str, focus: List[str]) -> str:
|
|||
function_string = (
|
||||
"def create_test_cases(code: str, focus: Optional[str] = None) -> str:"
|
||||
)
|
||||
args = [code, dumps(focus)]
|
||||
args = [code, json.dumps(focus)]
|
||||
description_string = """Generates test cases for the existing code, focusing on specific areas if required."""
|
||||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
|
|
|
@ -1,14 +1,13 @@
|
|||
from requests import get
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from config import Config
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def scrape_text(url):
|
||||
"""Scrape text from a webpage"""
|
||||
response = get(url)
|
||||
response = requests.get(url)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
|
@ -30,26 +29,22 @@ def scrape_text(url):
|
|||
def extract_hyperlinks(soup):
|
||||
"""Extract hyperlinks from a BeautifulSoup object"""
|
||||
hyperlinks = []
|
||||
|
||||
for link in soup.find_all('a', href=True):
|
||||
hyperlinks.append((link.text, link['href']))
|
||||
|
||||
return hyperlinks
|
||||
|
||||
|
||||
def format_hyperlinks(hyperlinks):
|
||||
"""Format hyperlinks into a list of strings"""
|
||||
formatted_links = []
|
||||
|
||||
for link_text, link_url in hyperlinks:
|
||||
formatted_links.append(f"{link_text} ({link_url})")
|
||||
|
||||
return formatted_links
|
||||
|
||||
|
||||
def scrape_links(url):
|
||||
"""Scrape hyperlinks from a webpage"""
|
||||
response = get(url)
|
||||
response = requests.get(url)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
|
@ -72,7 +67,6 @@ def split_text(text, max_length=8192):
|
|||
current_chunk = []
|
||||
|
||||
for paragraph in paragraphs:
|
||||
|
||||
if current_length + len(paragraph) + 1 <= max_length:
|
||||
current_chunk.append(paragraph)
|
||||
current_length += len(paragraph) + 1
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
from config import Config
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
from llm_utils import create_chat_completion
|
||||
# This is a magic function that can do anything with no-code. See
|
||||
# https://github.com/Torantulino/AI-Functions for more info.
|
||||
def call_ai_function(function, args, description, model=cfg.smart_llm_model):
|
||||
|
|
|
@ -1,11 +1,11 @@
|
|||
from time import sleep
|
||||
import time
|
||||
import openai
|
||||
from dotenv import load_dotenv
|
||||
from config import Config
|
||||
import token_counter
|
||||
from llm_utils import create_chat_completion
|
||||
cfg = Config()
|
||||
|
||||
cfg = Config()
|
||||
|
||||
def create_chat_message(role, content):
|
||||
"""
|
||||
|
@ -48,10 +48,8 @@ def chat_with_ai(
|
|||
"""
|
||||
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument
|
||||
# Reserve 1000 tokens for the response
|
||||
|
||||
if debug:
|
||||
print(f"Token limit: {token_limit}")
|
||||
|
||||
print(f"Token limit: {token_limit}")
|
||||
send_token_limit = token_limit - 1000
|
||||
|
||||
current_context = [
|
||||
|
@ -73,7 +71,6 @@ def chat_with_ai(
|
|||
message_to_add = full_message_history[next_message_to_add_index]
|
||||
|
||||
tokens_to_add = token_counter.count_message_tokens([message_to_add], model)
|
||||
|
||||
if current_tokens_used + tokens_to_add > send_token_limit:
|
||||
break
|
||||
|
||||
|
@ -99,16 +96,13 @@ def chat_with_ai(
|
|||
print(f"Send Token Count: {current_tokens_used}")
|
||||
print(f"Tokens remaining for response: {tokens_remaining}")
|
||||
print("------------ CONTEXT SENT TO AI ---------------")
|
||||
|
||||
for message in current_context:
|
||||
# Skip printing the prompt
|
||||
|
||||
if message["role"] == "system" and message["content"] == prompt:
|
||||
continue
|
||||
print(
|
||||
f"{message['role'].capitalize()}: {message['content']}")
|
||||
print()
|
||||
|
||||
print("----------- END OF CONTEXT ----------------")
|
||||
|
||||
# TODO: use a model defined elsewhere, so that model can contain temperature and other settings we care about
|
||||
|
@ -130,4 +124,4 @@ def chat_with_ai(
|
|||
except openai.error.RateLimitError:
|
||||
# TODO: WHen we switch to langchain, this is built in
|
||||
print("Error: ", "API Rate Limit Reached. Waiting 10 seconds...")
|
||||
sleep(10)
|
||||
time.sleep(10)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import browse
|
||||
import json
|
||||
import memory as mem
|
||||
from datetime import datetime
|
||||
import datetime
|
||||
import agent_manager as agents
|
||||
import speak
|
||||
from config import Config
|
||||
|
@ -110,7 +110,7 @@ def execute_command(command_name, arguments):
|
|||
def get_datetime():
|
||||
"""Return the current date and time"""
|
||||
return "Current date and time: " + \
|
||||
datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
|
||||
def google_search(query, num_results=8):
|
||||
|
|
|
@ -44,52 +44,42 @@ class Config(metaclass=Singleton):
|
|||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
|
||||
def set_continuous_mode(self, value: bool):
|
||||
"""Set the continuous mode value."""
|
||||
self.continuous_mode = value
|
||||
|
||||
|
||||
def set_speak_mode(self, value: bool):
|
||||
"""Set the speak mode value."""
|
||||
self.speak_mode = value
|
||||
|
||||
|
||||
def set_fast_llm_model(self, value: str):
|
||||
"""Set the fast LLM model value."""
|
||||
self.fast_llm_model = value
|
||||
|
||||
|
||||
def set_smart_llm_model(self, value: str):
|
||||
"""Set the smart LLM model value."""
|
||||
self.smart_llm_model = value
|
||||
|
||||
|
||||
def set_fast_token_limit(self, value: int):
|
||||
"""Set the fast token limit value."""
|
||||
self.fast_token_limit = value
|
||||
|
||||
|
||||
def set_smart_token_limit(self, value: int):
|
||||
"""Set the smart token limit value."""
|
||||
self.smart_token_limit = value
|
||||
|
||||
|
||||
def set_openai_api_key(self, value: str):
|
||||
"""Set the OpenAI API key value."""
|
||||
self.openai_api_key = value
|
||||
|
||||
|
||||
def set_elevenlabs_api_key(self, value: str):
|
||||
"""Set the ElevenLabs API key value."""
|
||||
self.elevenlabs_api_key = value
|
||||
|
||||
|
||||
def set_google_api_key(self, value: str):
|
||||
"""Set the Google API key value."""
|
||||
self.google_api_key = value
|
||||
|
||||
|
||||
def set_custom_search_engine_id(self, value: str):
|
||||
"""Set the custom search engine ID value."""
|
||||
self.custom_search_engine_id = value
|
||||
self.custom_search_engine_id = value
|
|
@ -1,4 +1,4 @@
|
|||
from os import path
|
||||
import os
|
||||
from pathlib import Path
|
||||
SRC_DIR = Path(__file__).parent
|
||||
|
||||
|
@ -6,7 +6,7 @@ def load_prompt():
|
|||
"""Load the prompt from data/prompt.txt"""
|
||||
try:
|
||||
# get directory of this file:
|
||||
file_dir = Path(path.dirname(path.realpath(__file__)))
|
||||
file_dir = Path(os.path.dirname(os.path.realpath(__file__)))
|
||||
data_dir = file_dir / "data"
|
||||
prompt_file = data_dir / "prompt.txt"
|
||||
# Load the promt from data/prompt.txt
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import docker
|
||||
from os import path
|
||||
import os
|
||||
|
||||
|
||||
def execute_python_file(file):
|
||||
|
@ -11,9 +11,9 @@ def execute_python_file(file):
|
|||
if not file.endswith(".py"):
|
||||
return "Error: Invalid file type. Only .py files are allowed."
|
||||
|
||||
file_path = path.join(workspace_folder, file)
|
||||
file_path = os.path.join(workspace_folder, file)
|
||||
|
||||
if not path.isfile(file_path):
|
||||
if not os.path.isfile(file_path):
|
||||
return f"Error: File '{file}' does not exist."
|
||||
|
||||
try:
|
||||
|
|
|
@ -36,10 +36,8 @@ def write_to_file(filename, text):
|
|||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
directory = os.path.dirname(filepath)
|
||||
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
|
||||
with open(filepath, "w") as f:
|
||||
f.write(text)
|
||||
return "File written to successfully."
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import json
|
||||
from call_ai_function import call_ai_function
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
def fix_and_parse_json(json_str: str, try_to_fix_with_gpt: bool = True):
|
||||
|
@ -38,18 +37,15 @@ def fix_and_parse_json(json_str: str, try_to_fix_with_gpt: bool = True):
|
|||
json_str = json_str[:last_brace_index+1]
|
||||
return json.loads(json_str)
|
||||
except Exception as e:
|
||||
|
||||
if try_to_fix_with_gpt:
|
||||
print(f"Warning: Failed to parse AI output, attempting to fix.\n If you see this warning frequently, it's likely that your prompt is confusing the AI. Try changing it up slightly.")
|
||||
# Now try to fix this up using the ai_functions
|
||||
ai_fixed_json = fix_json(json_str, json_schema, False)
|
||||
|
||||
if ai_fixed_json != "failed":
|
||||
return json.loads(ai_fixed_json)
|
||||
else:
|
||||
print(f"Failed to fix ai output, telling the AI.") # This allows the AI to react to the error message, which usually results in it correcting its ways.
|
||||
return json_str
|
||||
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
@ -63,11 +59,9 @@ def fix_json(json_str: str, schema: str, debug=False) -> str:
|
|||
# If it doesn't already start with a "`", add one:
|
||||
if not json_str.startswith("`"):
|
||||
json_str = "```json\n" + json_str + "\n```"
|
||||
|
||||
result_string = call_ai_function(
|
||||
function_string, args, description_string, model=cfg.fast_llm_model
|
||||
)
|
||||
|
||||
if debug:
|
||||
print("------------ JSON FIX ATTEMPT ---------------")
|
||||
print(f"Original JSON: {json_str}")
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import openai
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
openai.api_key = cfg.openai_api_key
|
||||
|
|
|
@ -27,24 +27,17 @@ def print_to_console(
|
|||
max_typing_speed=0.01):
|
||||
"""Prints text to the console with a typing effect"""
|
||||
global cfg
|
||||
|
||||
if speak_text and cfg.speak_mode:
|
||||
speak.say_text(f"{title}. {content}")
|
||||
|
||||
print(title_color + title + " " + Style.RESET_ALL, end="")
|
||||
|
||||
if content:
|
||||
|
||||
if isinstance(content, list):
|
||||
content = " ".join(content)
|
||||
words = content.split()
|
||||
|
||||
for i, word in enumerate(words):
|
||||
print(word, end="", flush=True)
|
||||
|
||||
if i < len(words) - 1:
|
||||
print(" ", end="", flush=True)
|
||||
|
||||
typing_speed = random.uniform(min_typing_speed, max_typing_speed)
|
||||
time.sleep(typing_speed)
|
||||
# type faster after each word
|
||||
|
@ -88,7 +81,6 @@ def print_assistant_thoughts(assistant_reply):
|
|||
if assistant_thoughts_plan:
|
||||
print_to_console("PLAN:", Fore.YELLOW, "")
|
||||
# If it's a list, join it into a string
|
||||
|
||||
if isinstance(assistant_thoughts_plan, list):
|
||||
assistant_thoughts_plan = "\n".join(assistant_thoughts_plan)
|
||||
elif isinstance(assistant_thoughts_plan, dict):
|
||||
|
@ -96,7 +88,6 @@ def print_assistant_thoughts(assistant_reply):
|
|||
|
||||
# Split the input_string using the newline character and dashes
|
||||
lines = assistant_thoughts_plan.split('\n')
|
||||
|
||||
for line in lines:
|
||||
line = line.lstrip("- ")
|
||||
print_to_console("- ", Fore.GREEN, line.strip())
|
||||
|
@ -131,13 +122,11 @@ def load_variables(config_file="config.yaml"):
|
|||
# Prompt the user for input if config file is missing or empty values
|
||||
if not ai_name:
|
||||
ai_name = input("Name your AI: ")
|
||||
|
||||
if ai_name == "":
|
||||
ai_name = "Entrepreneur-GPT"
|
||||
|
||||
if not ai_role:
|
||||
ai_role = input(f"{ai_name} is: ")
|
||||
|
||||
if ai_role == "":
|
||||
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
|
||||
|
||||
|
@ -146,20 +135,16 @@ def load_variables(config_file="config.yaml"):
|
|||
print("For example: \nIncrease net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'")
|
||||
print("Enter nothing to load defaults, enter nothing when finished.")
|
||||
ai_goals = []
|
||||
|
||||
for i in range(5):
|
||||
ai_goal = input(f"Goal {i+1}: ")
|
||||
|
||||
if ai_goal == "":
|
||||
break
|
||||
ai_goals.append(ai_goal)
|
||||
|
||||
if len(ai_goals) == 0:
|
||||
ai_goals = ["Increase net worth", "Grow Twitter Account", "Develop and manage multiple businesses autonomously"]
|
||||
|
||||
# Save variables to yaml file
|
||||
config = {"ai_name": ai_name, "ai_role": ai_role, "ai_goals": ai_goals}
|
||||
|
||||
with open(config_file, "w") as file:
|
||||
documents = yaml.dump(config, file)
|
||||
|
||||
|
@ -168,7 +153,6 @@ def load_variables(config_file="config.yaml"):
|
|||
|
||||
# Construct full prompt
|
||||
full_prompt = f"You are {ai_name}, {ai_role}\n{prompt_start}\n\nGOALS:\n\n"
|
||||
|
||||
for i, goal in enumerate(ai_goals):
|
||||
full_prompt += f"{i+1}. {goal}\n"
|
||||
|
||||
|
@ -179,7 +163,6 @@ def load_variables(config_file="config.yaml"):
|
|||
def construct_prompt():
|
||||
"""Construct the prompt for the AI to respond to"""
|
||||
config = AIConfig.load()
|
||||
|
||||
if config.ai_name:
|
||||
print_to_console(
|
||||
f"Welcome back! ",
|
||||
|
@ -190,8 +173,7 @@ def construct_prompt():
|
|||
Name: {config.ai_name}
|
||||
Role: {config.ai_role}
|
||||
Goals: {config.ai_goals}
|
||||
Continue (y/n): """)
|
||||
|
||||
Continue (y/n): """)
|
||||
if should_continue.lower() == "n":
|
||||
config = AIConfig()
|
||||
|
||||
|
@ -221,10 +203,8 @@ def prompt_user():
|
|||
print_to_console(
|
||||
"Name your AI: ",
|
||||
Fore.GREEN,
|
||||
"For example, 'Entrepreneur-GPT'")
|
||||
|
||||
"For example, 'Entrepreneur-GPT'")
|
||||
ai_name = input("AI Name: ")
|
||||
|
||||
if ai_name == "":
|
||||
ai_name = "Entrepreneur-GPT"
|
||||
|
||||
|
@ -240,7 +220,6 @@ def prompt_user():
|
|||
Fore.GREEN,
|
||||
"For example, 'an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.'")
|
||||
ai_role = input(f"{ai_name} is: ")
|
||||
|
||||
if ai_role == "":
|
||||
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
|
||||
|
||||
|
@ -248,19 +227,14 @@ def prompt_user():
|
|||
print_to_console(
|
||||
"Enter up to 5 goals for your AI: ",
|
||||
Fore.GREEN,
|
||||
"For example: \nIncrease net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'")
|
||||
|
||||
"For example: \nIncrease net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'")
|
||||
print("Enter nothing to load defaults, enter nothing when finished.", flush=True)
|
||||
ai_goals = []
|
||||
|
||||
for i in range(5):
|
||||
ai_goal = input(f"{Fore.LIGHTBLUE_EX}Goal{Style.RESET_ALL} {i+1}: ")
|
||||
|
||||
if ai_goal == "":
|
||||
break
|
||||
|
||||
ai_goals.append(ai_goal)
|
||||
|
||||
if len(ai_goals) == 0:
|
||||
ai_goals = ["Increase net worth", "Grow Twitter Account",
|
||||
"Develop and manage multiple businesses autonomously"]
|
||||
|
@ -268,7 +242,6 @@ def prompt_user():
|
|||
config = AIConfig(ai_name, ai_role, ai_goals)
|
||||
return config
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""Parses the arguments passed to the script"""
|
||||
global cfg
|
||||
|
@ -346,8 +319,7 @@ while True:
|
|||
f"Enter 'y' to authorise command or 'n' to exit program, or enter feedback for {ai_name}...",
|
||||
flush=True)
|
||||
while True:
|
||||
console_input = input(Fore.MAGENTA + "Input:" + Style.RESET_ALL)
|
||||
|
||||
console_input = input(Fore.MAGENTA + "Input:" + Style.RESET_ALL)
|
||||
if console_input.lower() == "y":
|
||||
user_input = "GENERATE NEXT COMMAND JSON"
|
||||
break
|
||||
|
|
|
@ -2,7 +2,6 @@ import os
|
|||
from playsound import playsound
|
||||
import requests
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
import gtts
|
||||
|
||||
|
@ -20,7 +19,8 @@ def eleven_labs_speech(text, voice_index=0):
|
|||
tts_url = "https://api.elevenlabs.io/v1/text-to-speech/{voice_id}".format(
|
||||
voice_id=voices[voice_index])
|
||||
formatted_message = {"text": text}
|
||||
response = requests.post(tts_url, headers=tts_headers, json=formatted_message)
|
||||
response = requests.post(
|
||||
tts_url, headers=tts_headers, json=formatted_message)
|
||||
|
||||
if response.status_code == 200:
|
||||
with open("speech.mpeg", "wb") as f:
|
||||
|
|
|
@ -14,7 +14,6 @@ class Spinner:
|
|||
self.running = False
|
||||
self.spinner_thread = None
|
||||
|
||||
|
||||
def spin(self):
|
||||
"""Spin the spinner"""
|
||||
while self.running:
|
||||
|
@ -23,14 +22,12 @@ class Spinner:
|
|||
time.sleep(self.delay)
|
||||
sys.stdout.write('\b' * (len(self.message) + 2))
|
||||
|
||||
|
||||
def __enter__(self):
|
||||
"""Start the spinner"""
|
||||
self.running = True
|
||||
self.spinner_thread = threading.Thread(target=self.spin)
|
||||
self.spinner_thread.start()
|
||||
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
"""Stop the spinner"""
|
||||
self.running = False
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import tiktoken
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5-turbo-0301") -> int:
|
||||
"""
|
||||
Returns the number of tokens used by a list of messages.
|
||||
|
@ -18,7 +17,6 @@ def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5
|
|||
except KeyError:
|
||||
print("Warning: model not found. Using cl100k_base encoding.")
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
|
||||
if model == "gpt-3.5-turbo":
|
||||
# !Node: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
|
||||
return count_message_tokens(messages, model="gpt-3.5-turbo-0301")
|
||||
|
@ -34,19 +32,15 @@ def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5
|
|||
else:
|
||||
raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
||||
num_tokens = 0
|
||||
|
||||
for message in messages:
|
||||
num_tokens += tokens_per_message
|
||||
|
||||
for key, value in message.items():
|
||||
num_tokens += len(encoding.encode(value))
|
||||
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
||||
return num_tokens
|
||||
|
||||
|
||||
def count_string_tokens(string: str, model_name: str) -> int:
|
||||
"""
|
||||
Returns the number of tokens in a text string.
|
||||
|
|
Loading…
Reference in New Issue