Shinobi/plugins/tensorflow/shinobi-tensorflow.js

503 lines
20 KiB
JavaScript
Raw Blame History

//
// Shinobi - OpenCV Plugin
// Copyright (C) 2016-2025 Moe Alam, moeiscool
//
// # Donate
//
// If you like what I am doing here and want me to continue please consider donating :)
// PayPal : paypal@m03.ca
//
process.on('uncaughtException', function (err) {
console.error('uncaughtException',err);
});
var fs=require('fs');
var cv=require('opencv4nodejs');
var exec = require('child_process').exec;
var moment = require('moment');
var Canvas = require('canvas');
var express = require('express');
const path = require('path');
var http = require('http'),
app = express(),
server = http.createServer(app);
var config=require('./conf.json');
if(!config.port){config.port=8080}
if(!config.hostPort){config.hostPort=8082}
if(config.systemLog===undefined){config.systemLog=true}
if(config.cascadesDir===undefined){config.cascadesDir=__dirname+'/cascades/'}
if(config.alprConfig===undefined){config.alprConfig=__dirname+'/openalpr.conf'}
s={
group:{},
dir:{
cascades : config.cascadesDir
},
isWin:(process.platform==='win32'),
foundCascades : {
}
}
//default stream folder check
if(!config.streamDir){
if(s.isWin===false){
config.streamDir='/dev/shm'
}else{
config.streamDir=config.windowsTempDir
}
if(!fs.existsSync(config.streamDir)){
config.streamDir=__dirname+'/streams/'
}else{
config.streamDir+='/streams/'
}
}
s.dir.streams=config.streamDir;
//streams dir
if(!fs.existsSync(s.dir.streams)){
fs.mkdirSync(s.dir.streams);
}
//streams dir
if(!fs.existsSync(s.dir.cascades)){
fs.mkdirSync(s.dir.cascades);
}
s.gid=function(x){
if(!x){x=10};var t = "";var p = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
for( var i=0; i < x; i++ )
t += p.charAt(Math.floor(Math.random() * p.length));
return t;
};
s.findCascades=function(callback){
var tmp={};
tmp.foundCascades=[];
fs.readdir(s.dir.cascades,function(err,files){
files.forEach(function(cascade,n){
if(cascade.indexOf('.xml')>-1){
tmp.foundCascades.push(cascade.replace('.xml',''))
}
})
s.cascadesInDir=tmp.foundCascades;
callback(tmp.foundCascades)
})
}
s.findCascades(function(){
//get cascades
})
s.detectLicensePlate=function(buffer,d,tx){
if(!d.mon.detector_lisence_plate_country||d.mon.detector_lisence_plate_country===''){
d.mon.detector_lisence_plate_country='us'
}
d.tmpFile=s.gid(5)+'.jpg'
if(!fs.existsSync(s.dir.streams)){
fs.mkdirSync(s.dir.streams);
}
d.dir=s.dir.streams+d.ke+'/'
if(!fs.existsSync(d.dir)){
fs.mkdirSync(d.dir);
}
d.dir=s.dir.streams+d.ke+'/'+d.id+'/'
if(!fs.existsSync(d.dir)){
fs.mkdirSync(d.dir);
}
fs.writeFile(d.dir+d.tmpFile,buffer,function(err){
if(err) return s.systemLog(err);
exec('alpr -j --config '+config.alprConfig+' -c '+d.mon.detector_lisence_plate_country+' '+d.dir+d.tmpFile,{encoding:'utf8'},(err, scan, stderr) => {
if(err){
s.systemLog(err);
}else{
try{
scan=JSON.parse(scan.replace('--(!)Loaded CUDA classifier','').trim())
}catch(err){
if(!scan||!scan.results){
return s.systemLog(scan,err);
}
}
if(scan.results.length>0){
scan.plates=[]
scan.mats=[]
scan.results.forEach(function(v){
v.candidates.forEach(function(g,n){
if(v.candidates[n].matches_template)
delete(v.candidates[n].matches_template)
})
scan.plates.push({coordinates:v.coordinates,candidates:v.candidates,confidence:v.confidence,plate:v.plate})
var width = Math.sqrt( Math.pow(v.coordinates[1].x - v.coordinates[0].x, 2) + Math.pow(v.coordinates[1].y - v.coordinates[0].y, 2));
var height = Math.sqrt( Math.pow(v.coordinates[2].x - v.coordinates[1].x, 2) + Math.pow(v.coordinates[2].y - v.coordinates[1].y, 2))
scan.mats.push({
x:v.coordinates[0].x,
y:v.coordinates[0].y,
width:width,
height:height,
tag:v.plate
})
})
tx({f:'trigger',id:d.id,ke:d.ke,details:{split:true,plug:config.plug,name:'licensePlate',reason:'object',matrices:scan.mats,imgHeight:d.mon.detector_scale_y,imgWidth:d.mon.detector_scale_x,frame:d.base64}})
}
}
exec('rm -rf '+d.dir+d.tmpFile,{encoding:'utf8'})
})
})
}
s.detectObject=function(buffer,d,tx){
//detect license plate?
if(d.mon.detector_lisence_plate==="1"){
s.detectLicensePlate(buffer,d,tx)
}
cv.imdecodeAsync(buffer,(err,im) => {
if(err){
console.log(err)
return
}
if (!cv.xmodules.dnn) {
throw new Error('exiting: opencv4nodejs compiled without dnn module');
}
// replace with path where you unzipped inception model
const inceptionModelPath = __dirname+'/data/inception';
const modelFile = path.resolve(inceptionModelPath, 'tensorflow_inception_graph.pb');
const classNamesFile = path.resolve(inceptionModelPath, 'imagenet_comp_graph_label_strings.txt');
if (!fs.existsSync(modelFile) || !fs.existsSync(classNamesFile)) {
console.log('could not find inception model');
console.log('download the model from: https://cdn.shinobi.video/weights/inception5h.zip');
throw new Error('exiting');
}
// read classNames and store them in an array
const classNames = fs.readFileSync(classNamesFile).toString().split('\n');
// initialize tensorflow inception model from modelFile
const net = cv.readNetFromTensorflow(modelFile);
// inception model works with 224 x 224 images, so we resize
// our input images and pad the image with white pixels to
// make the images have the same width and height
const maxImgDim = 224;
const white = new cv.Vec(255, 255, 255);
const imgResized = im.resizeToMax(maxImgDim).padToSquare(white);
// network accepts blobs as input
const inputBlob = cv.blobFromImage(imgResized);
net.setInput(inputBlob);
// forward pass input through entire network, will return
// classification result as 1xN Mat with confidences of each class
const outputBlob = net.forward();
// find all labels with a minimum confidence
const minConfidence = 0.05;
const locations =
outputBlob
.threshold(minConfidence, 1, cv.THRESH_BINARY)
.convertTo(cv.CV_8U)
.findNonZero();
// locations.forEach(function(v){
// console.log(v)
// })
const result =
locations.map(pt => ({
confidence: parseInt(outputBlob.at(0, pt.x) * 100) / 100,
className: classNames[pt.x]
}))
// sort result by confidence
.sort((r0, r1) => r1.confidence - r0.confidence)
.map(res => `${res.className} (${res.confidence})`);
console.log(result)
if(result.length > 0) {
s.cx({
f:'trigger',
id:d.id,
ke:d.ke,
name:'tensorflow',
details:{
plug:'tensorflow',
name:'tensorflow',
reason:'object',
matrices : result
// confidence:d.average
},
imgHeight:d.mon.detector_scale_y,
imgWidth:d.mon.detector_scale_x
})
}
})
}
s.systemLog=function(q,w,e){
if(!w){w=''}
if(!e){e=''}
if(config.systemLog===true){
return console.log(moment().format(),q,w,e)
}
}
s.blenderRegion=function(d,cord,tx){
d.width = d.image.width;
d.height = d.image.height;
if(!s.group[d.ke][d.id].canvas[cord.name]){
if(!cord.sensitivity||isNaN(cord.sensitivity)){
cord.sensitivity=d.mon.detector_sensitivity;
}
s.group[d.ke][d.id].canvas[cord.name] = new Canvas(d.width,d.height);
s.group[d.ke][d.id].canvasContext[cord.name] = s.group[d.ke][d.id].canvas[cord.name].getContext('2d');
s.group[d.ke][d.id].canvasContext[cord.name].fillStyle = '#000';
s.group[d.ke][d.id].canvasContext[cord.name].fillRect( 0, 0,d.width,d.height);
if(cord.points&&cord.points.length>0){
s.group[d.ke][d.id].canvasContext[cord.name].beginPath();
for (var b = 0; b < cord.points.length; b++){
cord.points[b][0]=parseFloat(cord.points[b][0]);
cord.points[b][1]=parseFloat(cord.points[b][1]);
if(b===0){
s.group[d.ke][d.id].canvasContext[cord.name].moveTo(cord.points[b][0],cord.points[b][1]);
}else{
s.group[d.ke][d.id].canvasContext[cord.name].lineTo(cord.points[b][0],cord.points[b][1]);
}
}
s.group[d.ke][d.id].canvasContext[cord.name].clip();
}
}
if(!s.group[d.ke][d.id].canvasContext[cord.name]){
return
}
s.group[d.ke][d.id].canvasContext[cord.name].drawImage(d.image, 0, 0, d.width, d.height);
if(!s.group[d.ke][d.id].blendRegion[cord.name]){
s.group[d.ke][d.id].blendRegion[cord.name] = new Canvas(d.width, d.height);
s.group[d.ke][d.id].blendRegionContext[cord.name] = s.group[d.ke][d.id].blendRegion[cord.name].getContext('2d');
}
var sourceData = s.group[d.ke][d.id].canvasContext[cord.name].getImageData(0, 0, d.width, d.height);
// create an image if the previous image doesn<73>t exist
if (!s.group[d.ke][d.id].lastRegionImageData[cord.name]) s.group[d.ke][d.id].lastRegionImageData[cord.name] = s.group[d.ke][d.id].canvasContext[cord.name].getImageData(0, 0, d.width, d.height);
// create a ImageData instance to receive the blended result
var blendedData = s.group[d.ke][d.id].canvasContext[cord.name].createImageData(d.width, d.height);
// blend the 2 images
s.differenceAccuracy(blendedData.data,sourceData.data,s.group[d.ke][d.id].lastRegionImageData[cord.name].data);
// draw the result in a canvas
s.group[d.ke][d.id].blendRegionContext[cord.name].putImageData(blendedData, 0, 0);
// store the current webcam image
s.group[d.ke][d.id].lastRegionImageData[cord.name] = sourceData;
blendedData = s.group[d.ke][d.id].blendRegionContext[cord.name].getImageData(0, 0, d.width, d.height);
var i = 0;
d.average = 0;
while (i < (blendedData.data.length * 0.25)) {
d.average += (blendedData.data[i * 4] + blendedData.data[i * 4 + 1] + blendedData.data[i * 4 + 2]);
++i;
}
d.average = (d.average / (blendedData.data.length * 0.25))*10;
if (d.average > parseFloat(cord.sensitivity)){
if(d.mon.detector_use_detect_object==="1"&&d.mon.detector_second!=='1'){
var buffer=s.group[d.ke][d.id].canvas[cord.name].toBuffer();
s.detectObject(buffer,d,tx)
}else{
tx({f:'trigger',id:d.id,ke:d.ke,details:{split:true,plug:config.plug,name:cord.name,reason:'motion',confidence:d.average,frame:d.base64}})
}
}
s.group[d.ke][d.id].canvasContext[cord.name].clearRect(0, 0, d.width, d.height);
s.group[d.ke][d.id].blendRegionContext[cord.name].clearRect(0, 0, d.width, d.height);
}
function blobToBuffer (blob, cb) {
if (typeof Blob === 'undefined' || !(blob instanceof Blob)) {
throw new Error('first argument must be a Blob')
}
if (typeof cb !== 'function') {
throw new Error('second argument must be a function')
}
var reader = new FileReader()
function onLoadEnd (e) {
reader.removeEventListener('loadend', onLoadEnd, false)
if (e.error) cb(e.error)
else cb(null, Buffer.from(reader.result))
}
reader.addEventListener('loadend', onLoadEnd, false)
reader.readAsArrayBuffer(blob)
}
function fastAbs(value) {
return (value ^ (value >> 31)) - (value >> 31);
}
function threshold(value) {
return (value > 0x15) ? 0xFF : 0;
}
s.differenceAccuracy=function(target, data1, data2) {
if (data1.length != data2.length) return null;
var i = 0;
while (i < (data1.length * 0.25)) {
var average1 = (data1[4 * i] + data1[4 * i + 1] + data1[4 * i + 2]) / 3;
var average2 = (data2[4 * i] + data2[4 * i + 1] + data2[4 * i + 2]) / 3;
var diff = threshold(fastAbs(average1 - average2));
target[4 * i] = diff;
target[4 * i + 1] = diff;
target[4 * i + 2] = diff;
target[4 * i + 3] = 0xFF;
++i;
}
}
s.checkAreas=function(d,tx){
if(!s.group[d.ke][d.id].cords){
if(!d.mon.cords){d.mon.cords={}}
s.group[d.ke][d.id].cords=Object.values(d.mon.cords);
}
if(d.mon.detector_frame==='1'){
d.mon.cords.frame={name:'FULL_FRAME',s:d.mon.detector_sensitivity,points:[[0,0],[0,d.image.height],[d.image.width,d.image.height],[d.image.width,0]]};
s.group[d.ke][d.id].cords.push(d.mon.cords.frame);
}
for (var b = 0; b < s.group[d.ke][d.id].cords.length; b++){
if(!s.group[d.ke][d.id].cords[b]){return}
s.blenderRegion(d,s.group[d.ke][d.id].cords[b],tx)
}
delete(d.image)
}
s.MainEventController=function(d,cn,tx){
switch(d.f){
case'refreshPlugins':
s.findCascades(function(cascades){
s.cx({f:'s.tx',data:{f:'detector_cascade_list',cascades:cascades},to:'GRP_'+d.ke})
})
break;
case'readPlugins':
s.cx({f:'s.tx',data:{f:'detector_cascade_list',cascades:s.cascadesInDir},to:'GRP_'+d.ke})
break;
case'init_plugin_as_host':
if(!cn){
console.log('No CN',d)
return
}
if(d.key!==config.key){
console.log(new Date(),'Plugin Key Mismatch',cn.request.connection.remoteAddress,d)
cn.emit('init',{ok:false})
cn.disconnect()
}else{
console.log(new Date(),'Plugin Connected to Client',cn.request.connection.remoteAddress)
cn.emit('init',{ok:true,plug:config.plug,notice:config.notice,type:config.type})
}
break;
case'init_monitor':
if(s.group[d.ke]&&s.group[d.ke][d.id]){
s.group[d.ke][d.id].canvas={}
s.group[d.ke][d.id].canvasContext={}
s.group[d.ke][d.id].blendRegion={}
s.group[d.ke][d.id].blendRegionContext={}
s.group[d.ke][d.id].lastRegionImageData={}
s.group[d.ke][d.id].numberOfTriggers=0
delete(s.group[d.ke][d.id].cords)
delete(s.group[d.ke][d.id].buffer)
}
break;
case'init_aws_push':
// console.log('init_aws')
s.group[d.ke][d.id].aws={links:[],complete:0,total:d.total,videos:[],tx:tx}
break;
case'frame':
try{
if(!s.group[d.ke]){
s.group[d.ke]={}
}
if(!s.group[d.ke][d.id]){
s.group[d.ke][d.id]={
canvas:{},
canvasContext:{},
lastRegionImageData:{},
blendRegion:{},
blendRegionContext:{},
}
}
if(!s.group[d.ke][d.id].buffer){
s.group[d.ke][d.id].buffer=[d.frame];
}else{
s.group[d.ke][d.id].buffer.push(d.frame)
}
if(d.frame[d.frame.length-2] === 0xFF && d.frame[d.frame.length-1] === 0xD9){
s.group[d.ke][d.id].buffer=Buffer.concat(s.group[d.ke][d.id].buffer);
try{
d.mon.detector_cascades=JSON.parse(d.mon.detector_cascades)
}catch(err){
}
if(d.mon.detector_frame_save==="1"){
d.base64=s.group[d.ke][d.id].buffer.toString('base64')
}
if(d.mon.detector_second==='1'&&d.objectOnly===true){
s.detectObject(s.group[d.ke][d.id].buffer,d,tx)
}else{
if((d.mon.detector_pam !== '1' && d.mon.detector_use_motion === "1") || d.mon.detector_use_detect_object !== "1"){
if((typeof d.mon.cords ==='string')&&d.mon.cords.trim()===''){
d.mon.cords=[]
}else{
try{
d.mon.cords=JSON.parse(d.mon.cords)
}catch(err){
// console.log('d.mon.cords',err,d)
}
}
s.group[d.ke][d.id].cords=Object.values(d.mon.cords);
d.mon.cords=d.mon.cords;
d.image = new Canvas.Image;
if(d.mon.detector_scale_x===''||d.mon.detector_scale_y===''){
s.systemLog('Must set detector image size')
return
}else{
d.image.width=d.mon.detector_scale_x;
d.image.height=d.mon.detector_scale_y;
}
d.width=d.image.width;
d.height=d.image.height;
d.image.onload = function() {
s.checkAreas(d,tx);
}
d.image.src = s.group[d.ke][d.id].buffer;
}else{
s.detectObject(s.group[d.ke][d.id].buffer,d,tx)
}
}
s.group[d.ke][d.id].buffer=null;
}
}catch(err){
if(err){
s.systemLog(err)
delete(s.group[d.ke][d.id].buffer)
}
}
break;
}
}
server.listen(config.hostPort);
//web pages and plugin api
app.get('/', function (req, res) {
res.end('<b>'+config.plug+'</b> for Shinobi is running')
});
//Conector to Shinobi
if(config.mode==='host'){
//start plugin as host
var io = require('socket.io')(server);
io.attach(server);
s.connectedClients={};
io.on('connection', function (cn) {
s.connectedClients[cn.id]={id:cn.id}
s.connectedClients[cn.id].tx = function(data){
data.pluginKey=config.key;data.plug=config.plug;
return io.to(cn.id).emit('ocv',data);
}
cn.on('f',function(d){
s.MainEventController(d,cn,s.connectedClients[cn.id].tx)
});
cn.on('disconnect',function(d){
delete(s.connectedClients[cn.id])
})
});
}else{
//start plugin as client
if(!config.host){config.host='localhost'}
var io = require('socket.io-client')('ws://'+config.host+':'+config.port);//connect to master
s.cx=function(x){x.pluginKey=config.key;x.plug=config.plug;return io.emit('ocv',x)}
io.on('connect',function(d){
s.cx({f:'init',plug:config.plug,notice:config.notice,type:config.type});
})
io.on('disconnect',function(d){
io.connect();
})
io.on('f',function(d){
s.MainEventController(d,null,s.cx)
})
}