Merge branch 'dev' of https://gitlab.com/Shinobi-Systems/Shinobi into dev
commit
f7fd086665
|
@ -0,0 +1,4 @@
|
||||||
|
conf.json
|
||||||
|
dist
|
||||||
|
models
|
||||||
|
.env
|
|
@ -0,0 +1,31 @@
|
||||||
|
#!/bin/bash
|
||||||
|
DIR=`dirname $0`
|
||||||
|
echo "Installing coral dependencies..."
|
||||||
|
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list
|
||||||
|
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install libedgetpu1-max
|
||||||
|
sudo apt-get install libatlas-base-dev
|
||||||
|
echo "Coral dependencies installed."
|
||||||
|
echo "Getting coral object detection models..."
|
||||||
|
mkdir -p models
|
||||||
|
wget "https://github.com/google-coral/edgetpu/raw/master/test_data/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite"
|
||||||
|
mv ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite models/
|
||||||
|
wget "https://dl.google.com/coral/canned_models/coco_labels.txt"
|
||||||
|
mv coco_labels.txt models/
|
||||||
|
echo "Models downloaded."
|
||||||
|
|
||||||
|
|
||||||
|
npm install yarn -g --unsafe-perm --force
|
||||||
|
npm install --unsafe-perm
|
||||||
|
if [ ! -e "./conf.json" ]; then
|
||||||
|
echo "Creating conf.json"
|
||||||
|
sudo cp conf.sample.json conf.json
|
||||||
|
else
|
||||||
|
echo "conf.json already exists..."
|
||||||
|
fi
|
||||||
|
echo "Adding Random Plugin Key to Main Configuration"
|
||||||
|
node $DIR/../../tools/modifyConfigurationForPlugin.js tensorflow-coral key=$(head -c 64 < /dev/urandom | sha256sum | awk '{print substr($1,1,60)}')
|
||||||
|
|
||||||
|
echo "!!!IMPORTANT!!!"
|
||||||
|
echo "IF YOU DON'T HAVE INSTALLED CORAL DEPENDENCIES BEFORE, YOU NEED TO PLUG OUT AND THEN PLUG IN YOUR CORAL USB ACCELERATOR BEFORE USING THIS PLUGIN"
|
|
@ -0,0 +1,82 @@
|
||||||
|
# TensorFlowCoral.js
|
||||||
|
|
||||||
|
**Ubuntu and CentOS only**
|
||||||
|
|
||||||
|
Go to the Shinobi directory. **/home/Shinobi** is the default directory.
|
||||||
|
|
||||||
|
```
|
||||||
|
cd /home/Shinobi/plugins/tensorflow
|
||||||
|
```
|
||||||
|
|
||||||
|
Install TensorFlows python version first:
|
||||||
|
https://www.tensorflow.org/lite/guide/python
|
||||||
|
Make sure that you are downloading the correct file for your system architecture and python version.
|
||||||
|
|
||||||
|
Install other python dependencies
|
||||||
|
```
|
||||||
|
pip install pillow
|
||||||
|
pip install numpy
|
||||||
|
```
|
||||||
|
|
||||||
|
Copy the config file.
|
||||||
|
|
||||||
|
```
|
||||||
|
sh INSTALL.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
IF YOU DON'T HAVE INSTALLED CORAL DEPENDENCIES BEFORE, YOU NEED TO PLUG OUT AND THEN PLUG IN YOUR CORAL USB ACCELERATOR BEFORE USING THIS PLUGIN!
|
||||||
|
|
||||||
|
Start the plugin.
|
||||||
|
|
||||||
|
```
|
||||||
|
pm2 start shinobi-tensorflow.js
|
||||||
|
```
|
||||||
|
|
||||||
|
Doing this will reveal options in the monitor configuration. Shinobi does not need to be restarted when a plugin is initiated or stopped.
|
||||||
|
|
||||||
|
## Run the plugin as a Host
|
||||||
|
> The main app (Shinobi) will be the client and the plugin will be the host. The purpose of allowing this method is so that you can use one plugin for multiple Shinobi instances. Allowing you to easily manage connections without starting multiple processes.
|
||||||
|
|
||||||
|
Edit your plugins configuration file. Set the `hostPort` **to be different** than the `listening port for camera.js`.
|
||||||
|
|
||||||
|
```
|
||||||
|
nano conf.json
|
||||||
|
```
|
||||||
|
|
||||||
|
Here is a sample of a Host configuration for the plugin.
|
||||||
|
- `plug` is the name of the plugin corresponding in the main configuration file.
|
||||||
|
- `https` choose if you want to use SSL or not. Default is `false`.
|
||||||
|
- `hostPort` can be any available port number. **Don't make this the same port number as Shinobi.** Default is `8082`.
|
||||||
|
- `type` tells the main application (Shinobi) what kind of plugin it is. In this case it is a detector.
|
||||||
|
|
||||||
|
```
|
||||||
|
{
|
||||||
|
"plug":"Tensorflow",
|
||||||
|
"hostPort":8082,
|
||||||
|
"key":"Tensorflow123123",
|
||||||
|
"mode":"host",
|
||||||
|
"type":"detector"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Now modify the **main configuration file** located in the main directory of Shinobi.
|
||||||
|
|
||||||
|
```
|
||||||
|
nano conf.json
|
||||||
|
```
|
||||||
|
|
||||||
|
Add the `plugins` array if you don't already have it. Add the following *object inside the array*.
|
||||||
|
|
||||||
|
```
|
||||||
|
"plugins":[
|
||||||
|
{
|
||||||
|
"id" : "Tensorflow",
|
||||||
|
"https" : false,
|
||||||
|
"host" : "localhost",
|
||||||
|
"port" : 8082,
|
||||||
|
"key" : "Tensorflow123123",
|
||||||
|
"mode" : "host",
|
||||||
|
"type" : "detector"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
```
|
|
@ -0,0 +1,9 @@
|
||||||
|
{
|
||||||
|
"plug":"TensorflowCoral",
|
||||||
|
"host":"localhost",
|
||||||
|
"port":8080,
|
||||||
|
"hostPort":8082,
|
||||||
|
"key":"change_this_to_something_very_random____make_sure_to_match__/plugins/tensorflow-coral/conf.json",
|
||||||
|
"mode":"client",
|
||||||
|
"type":"detector"
|
||||||
|
}
|
|
@ -0,0 +1,163 @@
|
||||||
|
# Lint as: python3
|
||||||
|
# Copyright 2019 Google LLC
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# https://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Functions to work with detection models."""
|
||||||
|
|
||||||
|
import collections
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
Object = collections.namedtuple('Object', ['id', 'score', 'bbox'])
|
||||||
|
|
||||||
|
|
||||||
|
class BBox(collections.namedtuple('BBox', ['xmin', 'ymin', 'xmax', 'ymax'])):
|
||||||
|
"""Bounding box.
|
||||||
|
|
||||||
|
Represents a rectangle which sides are either vertical or horizontal, parallel
|
||||||
|
to the x or y axis.
|
||||||
|
"""
|
||||||
|
__slots__ = ()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def width(self):
|
||||||
|
"""Returns bounding box width."""
|
||||||
|
return self.xmax - self.xmin
|
||||||
|
|
||||||
|
@property
|
||||||
|
def height(self):
|
||||||
|
"""Returns bounding box height."""
|
||||||
|
return self.ymax - self.ymin
|
||||||
|
|
||||||
|
@property
|
||||||
|
def area(self):
|
||||||
|
"""Returns bound box area."""
|
||||||
|
return self.width * self.height
|
||||||
|
|
||||||
|
@property
|
||||||
|
def valid(self):
|
||||||
|
"""Returns whether bounding box is valid or not.
|
||||||
|
|
||||||
|
Valid bounding box has xmin <= xmax and ymin <= ymax which is equivalent to
|
||||||
|
width >= 0 and height >= 0.
|
||||||
|
"""
|
||||||
|
return self.width >= 0 and self.height >= 0
|
||||||
|
|
||||||
|
def scale(self, sx, sy):
|
||||||
|
"""Returns scaled bounding box."""
|
||||||
|
return BBox(xmin=sx * self.xmin,
|
||||||
|
ymin=sy * self.ymin,
|
||||||
|
xmax=sx * self.xmax,
|
||||||
|
ymax=sy * self.ymax)
|
||||||
|
|
||||||
|
def translate(self, dx, dy):
|
||||||
|
"""Returns translated bounding box."""
|
||||||
|
return BBox(xmin=dx + self.xmin,
|
||||||
|
ymin=dy + self.ymin,
|
||||||
|
xmax=dx + self.xmax,
|
||||||
|
ymax=dy + self.ymax)
|
||||||
|
|
||||||
|
def map(self, f):
|
||||||
|
"""Returns bounding box modified by applying f for each coordinate."""
|
||||||
|
return BBox(xmin=f(self.xmin),
|
||||||
|
ymin=f(self.ymin),
|
||||||
|
xmax=f(self.xmax),
|
||||||
|
ymax=f(self.ymax))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def intersect(a, b):
|
||||||
|
"""Returns the intersection of two bounding boxes (may be invalid)."""
|
||||||
|
return BBox(xmin=max(a.xmin, b.xmin),
|
||||||
|
ymin=max(a.ymin, b.ymin),
|
||||||
|
xmax=min(a.xmax, b.xmax),
|
||||||
|
ymax=min(a.ymax, b.ymax))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def union(a, b):
|
||||||
|
"""Returns the union of two bounding boxes (always valid)."""
|
||||||
|
return BBox(xmin=min(a.xmin, b.xmin),
|
||||||
|
ymin=min(a.ymin, b.ymin),
|
||||||
|
xmax=max(a.xmax, b.xmax),
|
||||||
|
ymax=max(a.ymax, b.ymax))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def iou(a, b):
|
||||||
|
"""Returns intersection-over-union value."""
|
||||||
|
intersection = BBox.intersect(a, b)
|
||||||
|
if not intersection.valid:
|
||||||
|
return 0.0
|
||||||
|
area = intersection.area
|
||||||
|
return area / (a.area + b.area - area)
|
||||||
|
|
||||||
|
|
||||||
|
def input_size(interpreter):
|
||||||
|
"""Returns input image size as (width, height) tuple."""
|
||||||
|
_, height, width, _ = interpreter.get_input_details()[0]['shape']
|
||||||
|
return width, height
|
||||||
|
|
||||||
|
|
||||||
|
def input_tensor(interpreter):
|
||||||
|
"""Returns input tensor view as numpy array of shape (height, width, 3)."""
|
||||||
|
tensor_index = interpreter.get_input_details()[0]['index']
|
||||||
|
return interpreter.tensor(tensor_index)()[0]
|
||||||
|
|
||||||
|
|
||||||
|
def set_input(interpreter, size, resize):
|
||||||
|
"""Copies a resized and properly zero-padded image to the input tensor.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
interpreter: Interpreter object.
|
||||||
|
size: original image size as (width, height) tuple.
|
||||||
|
resize: a function that takes a (width, height) tuple, and returns an RGB
|
||||||
|
image resized to those dimensions.
|
||||||
|
Returns:
|
||||||
|
Actual resize ratio, which should be passed to `get_output` function.
|
||||||
|
"""
|
||||||
|
width, height = input_size(interpreter)
|
||||||
|
w, h = size
|
||||||
|
scale = min(width / w, height / h)
|
||||||
|
w, h = int(w * scale), int(h * scale)
|
||||||
|
tensor = input_tensor(interpreter)
|
||||||
|
tensor.fill(0) # padding
|
||||||
|
_, _, channel = tensor.shape
|
||||||
|
tensor[:h, :w] = np.reshape(resize((w, h)), (h, w, channel))
|
||||||
|
return scale, scale
|
||||||
|
|
||||||
|
|
||||||
|
def output_tensor(interpreter, i):
|
||||||
|
"""Returns output tensor view."""
|
||||||
|
tensor = interpreter.tensor(interpreter.get_output_details()[i]['index'])()
|
||||||
|
return np.squeeze(tensor)
|
||||||
|
|
||||||
|
|
||||||
|
def get_output(interpreter, score_threshold, image_scale=(1.0, 1.0)):
|
||||||
|
"""Returns list of detected objects."""
|
||||||
|
boxes = output_tensor(interpreter, 0)
|
||||||
|
class_ids = output_tensor(interpreter, 1)
|
||||||
|
scores = output_tensor(interpreter, 2)
|
||||||
|
count = int(output_tensor(interpreter, 3))
|
||||||
|
|
||||||
|
width, height = input_size(interpreter)
|
||||||
|
image_scale_x, image_scale_y = image_scale
|
||||||
|
sx, sy = width / image_scale_x, height / image_scale_y
|
||||||
|
|
||||||
|
def make(i):
|
||||||
|
ymin, xmin, ymax, xmax = boxes[i]
|
||||||
|
return Object(
|
||||||
|
id=int(class_ids[i]),
|
||||||
|
score=float(scores[i]),
|
||||||
|
bbox=BBox(xmin=xmin,
|
||||||
|
ymin=ymin,
|
||||||
|
xmax=xmax,
|
||||||
|
ymax=ymax).scale(sx, sy).map(int))
|
||||||
|
|
||||||
|
return [make(i) for i in range(count) if scores[i] >= score_threshold]
|
|
@ -0,0 +1,118 @@
|
||||||
|
# Lint as: python3
|
||||||
|
# Copyright 2019 Google LLC
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# https://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Example using TF Lite to detect objects in a given image."""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import time
|
||||||
|
import sys
|
||||||
|
from PIL import Image
|
||||||
|
from PIL import ImageDraw
|
||||||
|
from io import BytesIO, StringIO
|
||||||
|
import time
|
||||||
|
import base64
|
||||||
|
import json
|
||||||
|
import detect
|
||||||
|
import tflite_runtime.interpreter as tflite
|
||||||
|
import platform
|
||||||
|
|
||||||
|
EDGETPU_SHARED_LIB = {
|
||||||
|
'Linux': 'libedgetpu.so.1',
|
||||||
|
'Darwin': 'libedgetpu.1.dylib',
|
||||||
|
'Windows': 'edgetpu.dll'
|
||||||
|
}[platform.system()]
|
||||||
|
|
||||||
|
def load_labels(path, encoding='utf-8'):
|
||||||
|
"""Loads labels from file (with or without index numbers).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path: path to label file.
|
||||||
|
encoding: label file encoding.
|
||||||
|
Returns:
|
||||||
|
Dictionary mapping indices to labels.
|
||||||
|
"""
|
||||||
|
with open(path, 'r', encoding=encoding) as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
if not lines:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
||||||
|
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
||||||
|
return {int(index): label.strip() for index, label in pairs}
|
||||||
|
else:
|
||||||
|
return {index: line.strip() for index, line in enumerate(lines)}
|
||||||
|
|
||||||
|
|
||||||
|
def make_interpreter(model_file):
|
||||||
|
model_file, *device = model_file.split('@')
|
||||||
|
return tflite.Interpreter(
|
||||||
|
model_path=model_file,
|
||||||
|
experimental_delegates=[
|
||||||
|
tflite.load_delegate(EDGETPU_SHARED_LIB,
|
||||||
|
{'device': device[0]} if device else {})
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
def draw_objects(draw, objs, labels):
|
||||||
|
"""Draws the bounding box and label for each object."""
|
||||||
|
for obj in objs:
|
||||||
|
bbox = obj.bbox
|
||||||
|
draw.rectangle([(bbox.xmin, bbox.ymin), (bbox.xmax, bbox.ymax)],
|
||||||
|
outline='red')
|
||||||
|
draw.text((bbox.xmin + 10, bbox.ymin + 10),
|
||||||
|
'%s\n%.2f' % (labels.get(obj.id, obj.id), obj.score),
|
||||||
|
fill='red')
|
||||||
|
|
||||||
|
|
||||||
|
def printInfo(text):
|
||||||
|
print(json.dumps({"type": "info", "data": text}))
|
||||||
|
|
||||||
|
def printError(text):
|
||||||
|
print(json.dumps({"type": "error", "data": text}))
|
||||||
|
|
||||||
|
def printData(array, time):
|
||||||
|
print(json.dumps({"type": "data", "data": array, "time": time}))
|
||||||
|
|
||||||
|
def main():
|
||||||
|
labels = load_labels("models/coco_labels.txt")
|
||||||
|
interpreter = make_interpreter("models/ssd_mobilenet_v2_coco_quant_postprocess_edgetpu.tflite")
|
||||||
|
interpreter.allocate_tensors()
|
||||||
|
threshold = 0.4
|
||||||
|
printInfo("ready")
|
||||||
|
while True:
|
||||||
|
line = sys.stdin.readline().rstrip("\n")
|
||||||
|
try:
|
||||||
|
rawImage = BytesIO(base64.b64decode(line))
|
||||||
|
image = Image.open(rawImage)
|
||||||
|
scale = detect.set_input(interpreter, image.size,
|
||||||
|
lambda size: image.resize(size, Image.ANTIALIAS))
|
||||||
|
|
||||||
|
start = time.perf_counter()
|
||||||
|
interpreter.invoke()
|
||||||
|
inference_time = time.perf_counter() - start
|
||||||
|
objs = detect.get_output(interpreter, threshold, scale)
|
||||||
|
output = []
|
||||||
|
for obj in objs:
|
||||||
|
label = labels.get(obj.id, obj.id)
|
||||||
|
labelID = obj[0]
|
||||||
|
score = obj[1]
|
||||||
|
bbox = obj[2]
|
||||||
|
output.append({"bbox": bbox, "class": label, "score": score})
|
||||||
|
printData(output, (inference_time * 1000))
|
||||||
|
except Exception as e:
|
||||||
|
printError(str(e))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,33 @@
|
||||||
|
{
|
||||||
|
"name": "shinobi-tensorflow-coral",
|
||||||
|
"author": "Shinob Systems, Moinul Alam | dermodmaster, Levent Koch",
|
||||||
|
"version": "1.0.0",
|
||||||
|
"description": "Object Detection plugin based on tensorflow using Google Coral USB Accelerator",
|
||||||
|
"main": "shinobi-tensorflow.js",
|
||||||
|
"dependencies": {
|
||||||
|
"dotenv": "^8.2.0",
|
||||||
|
"express": "^4.16.2",
|
||||||
|
"moment": "^2.19.2",
|
||||||
|
"socket.io": "^2.0.4",
|
||||||
|
"socket.io-client": "^1.7.4"
|
||||||
|
},
|
||||||
|
"devDependencies": {},
|
||||||
|
"bin": "shinobi-tensorflow.js",
|
||||||
|
"scripts": {
|
||||||
|
"package": "pkg package.json -t linux,macos,win --out-path dist",
|
||||||
|
"package-x64": "pkg package.json -t linux-x64,macos-x64,win-x64 --out-path dist/x64",
|
||||||
|
"package-x86": "pkg package.json -t linux-x86,macos-x86,win-x86 --out-path dist/x86",
|
||||||
|
"package-armv6": "pkg package.json -t linux-armv6,macos-armv6,win-armv6 --out-path dist/armv6",
|
||||||
|
"package-armv7": "pkg package.json -t linux-armv7,macos-armv7,win-armv7 --out-path dist/armv7",
|
||||||
|
"package-all": "npm run package && npm run package-x64 && npm run package-x86 && npm run package-armv6 && npm run package-armv7"
|
||||||
|
},
|
||||||
|
"pkg": {
|
||||||
|
"targets": [
|
||||||
|
"node12"
|
||||||
|
],
|
||||||
|
"scripts": [
|
||||||
|
"../pluginBase.js"
|
||||||
|
],
|
||||||
|
"assets": []
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,146 @@
|
||||||
|
//
|
||||||
|
// Shinobi - Tensorflow Plugin
|
||||||
|
// Copyright (C) 2016-2025 Moe Alam, moeiscool
|
||||||
|
// Copyright (C) 2020 Levent Koch, dermodmaster
|
||||||
|
//
|
||||||
|
// # Donate
|
||||||
|
//
|
||||||
|
// If you like what I am doing here and want me to continue please consider donating :)
|
||||||
|
// PayPal : paypal@m03.ca
|
||||||
|
//
|
||||||
|
// Base Init >>
|
||||||
|
var fs = require('fs');
|
||||||
|
var config = require('./conf.json')
|
||||||
|
var dotenv = require('dotenv').config()
|
||||||
|
var s
|
||||||
|
try {
|
||||||
|
s = require('../pluginBase.js')(__dirname, config)
|
||||||
|
} catch (err) {
|
||||||
|
console.log(err)
|
||||||
|
try {
|
||||||
|
s = require('./pluginBase.js')(__dirname, config)
|
||||||
|
} catch (err) {
|
||||||
|
console.log(err)
|
||||||
|
return console.log(config.plug, 'Plugin start has failed. pluginBase.js was not found.')
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
var ready = false;
|
||||||
|
const spawn = require('child_process').spawn;
|
||||||
|
var child = null
|
||||||
|
function respawn() {
|
||||||
|
|
||||||
|
console.log("respawned python",(new Date()))
|
||||||
|
const theChild = spawn('python3', ['-u', 'detect_image.py']);
|
||||||
|
|
||||||
|
var lastStatusLog = new Date();
|
||||||
|
|
||||||
|
theChild.on('exit', () => {
|
||||||
|
child = respawn();
|
||||||
|
});
|
||||||
|
|
||||||
|
theChild.stdout.on('data', function (data) {
|
||||||
|
var rawString = data.toString('utf8');
|
||||||
|
if (new Date() - lastStatusLog > 5000) {
|
||||||
|
lastStatusLog = new Date();
|
||||||
|
console.log(rawString, new Date());
|
||||||
|
}
|
||||||
|
var messages = rawString.split('\n')
|
||||||
|
messages.forEach((message) => {
|
||||||
|
if (message === "") return;
|
||||||
|
var obj = JSON.parse(message)
|
||||||
|
if (obj.type === "error") {
|
||||||
|
console.log("Script got error: " + message.data, new Date());
|
||||||
|
throw message.data;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (obj.type === "info" && obj.data === "ready") {
|
||||||
|
console.log("set ready true")
|
||||||
|
ready = true;
|
||||||
|
} else {
|
||||||
|
if (obj.type !== "data" && obj.type !== "info") {
|
||||||
|
throw "Unexpected message: " + rawString;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
})
|
||||||
|
return theChild
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Base Init />>
|
||||||
|
child = respawn();
|
||||||
|
|
||||||
|
const emptyDataObject = { data: [], type: undefined, time: 0 };
|
||||||
|
|
||||||
|
async function process(buffer, type) {
|
||||||
|
const startTime = new Date();
|
||||||
|
if (!ready) {
|
||||||
|
return emptyDataObject;
|
||||||
|
}
|
||||||
|
ready = false;
|
||||||
|
child.stdin.write(buffer.toString('base64') + '\n');
|
||||||
|
|
||||||
|
var message = null;
|
||||||
|
await new Promise(resolve => {
|
||||||
|
child.stdout.once('data', (data) => {
|
||||||
|
var rawString = data.toString('utf8').split("\n")[0];
|
||||||
|
try {
|
||||||
|
message = JSON.parse(rawString)
|
||||||
|
}
|
||||||
|
catch (e) {
|
||||||
|
message = { data: [] };
|
||||||
|
}
|
||||||
|
resolve();
|
||||||
|
});
|
||||||
|
})
|
||||||
|
const data = message.data;
|
||||||
|
ready = true;
|
||||||
|
return {
|
||||||
|
data: data,
|
||||||
|
type: type,
|
||||||
|
time: new Date() - startTime
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
s.detectObject = function (buffer, d, tx, frameLocation, callback) {
|
||||||
|
process(buffer).then((resp) => {
|
||||||
|
var results = resp.data
|
||||||
|
//console.log(resp.time)
|
||||||
|
if (Array.isArray(results) && results[0]) {
|
||||||
|
var mats = []
|
||||||
|
results.forEach(function (v) {
|
||||||
|
mats.push({
|
||||||
|
x: v.bbox[0],
|
||||||
|
y: v.bbox[1],
|
||||||
|
width: v.bbox[2],
|
||||||
|
height: v.bbox[3],
|
||||||
|
tag: v.class,
|
||||||
|
confidence: v.score,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
var isObjectDetectionSeparate = d.mon.detector_pam === '1' && d.mon.detector_use_detect_object === '1'
|
||||||
|
var width = parseFloat(isObjectDetectionSeparate && d.mon.detector_scale_y_object ? d.mon.detector_scale_y_object : d.mon.detector_scale_y)
|
||||||
|
var height = parseFloat(isObjectDetectionSeparate && d.mon.detector_scale_x_object ? d.mon.detector_scale_x_object : d.mon.detector_scale_x)
|
||||||
|
tx({
|
||||||
|
f: 'trigger',
|
||||||
|
id: d.id,
|
||||||
|
ke: d.ke,
|
||||||
|
details: {
|
||||||
|
plug: config.plug,
|
||||||
|
name: 'Tensorflow',
|
||||||
|
reason: 'object',
|
||||||
|
matrices: mats,
|
||||||
|
imgHeight: width,
|
||||||
|
imgWidth: height,
|
||||||
|
time: resp.time
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
callback()
|
||||||
|
})
|
||||||
|
}
|
Loading…
Reference in New Issue