rename shinobi-tensorflow (for coral) to shinobi-tensorflow-coral

mitchross-coral-installer-update
Moe Alam 2020-12-02 13:23:27 -08:00
parent cde4a7dddb
commit 5dfd8fc67b
4 changed files with 150 additions and 149 deletions

View File

@ -29,7 +29,7 @@ IF YOU DON'T HAVE INSTALLED CORAL DEPENDENCIES BEFORE, YOU NEED TO PLUG OUT AND
Start the plugin.
```
pm2 start shinobi-tensorflow.js
pm2 start shinobi-tensorflow-coral.js
```
Doing this will reveal options in the monitor configuration. Shinobi does not need to be restarted when a plugin is initiated or stopped.

View File

@ -3,7 +3,7 @@
"author": "Shinob Systems, Moinul Alam | dermodmaster, Levent Koch",
"version": "1.0.0",
"description": "Object Detection plugin based on tensorflow using Google Coral USB Accelerator",
"main": "shinobi-tensorflow.js",
"main": "shinobi-tensorflow-coral.js",
"dependencies": {
"dotenv": "^8.2.0",
"express": "^4.16.2",
@ -12,7 +12,7 @@
"socket.io-client": "^1.7.4"
},
"devDependencies": {},
"bin": "shinobi-tensorflow.js",
"bin": "shinobi-tensorflow-coral.js",
"scripts": {
"package": "pkg package.json -t linux,macos,win --out-path dist",
"package-x64": "pkg package.json -t linux-x64,macos-x64,win-x64 --out-path dist/x64",

View File

@ -0,0 +1,146 @@
//
// Shinobi - Tensorflow Plugin
// Copyright (C) 2016-2025 Moe Alam, moeiscool
// Copyright (C) 2020 Levent Koch, dermodmaster
//
// # Donate
//
// If you like what I am doing here and want me to continue please consider donating :)
// PayPal : paypal@m03.ca
//
// Base Init >>
var fs = require('fs');
var config = require('./conf.json')
var dotenv = require('dotenv').config()
var s
try {
s = require('../pluginBase.js')(__dirname, config)
} catch (err) {
console.log(err)
try {
s = require('./pluginBase.js')(__dirname, config)
} catch (err) {
console.log(err)
return console.log(config.plug, 'Plugin start has failed. pluginBase.js was not found.')
}
}
var ready = false;
const spawn = require('child_process').spawn;
var child = null
function respawn() {
console.log("respawned python",(new Date()))
const theChild = spawn('python3', ['-u', 'detect_image.py']);
var lastStatusLog = new Date();
theChild.on('exit', () => {
child = respawn();
});
theChild.stdout.on('data', function (data) {
var rawString = data.toString('utf8');
if (new Date() - lastStatusLog > 5000) {
lastStatusLog = new Date();
console.log(rawString, new Date());
}
var messages = rawString.split('\n')
messages.forEach((message) => {
if (message === "") return;
var obj = JSON.parse(message)
if (obj.type === "error") {
console.log("Script got error: " + message.data, new Date());
throw message.data;
}
if (obj.type === "info" && obj.data === "ready") {
console.log("set ready true")
ready = true;
} else {
if (obj.type !== "data" && obj.type !== "info") {
throw "Unexpected message: " + rawString;
}
}
})
})
return theChild
}
// Base Init />>
child = respawn();
const emptyDataObject = { data: [], type: undefined, time: 0 };
async function process(buffer, type) {
const startTime = new Date();
if (!ready) {
return emptyDataObject;
}
ready = false;
child.stdin.write(buffer.toString('base64') + '\n');
var message = null;
await new Promise(resolve => {
child.stdout.once('data', (data) => {
var rawString = data.toString('utf8').split("\n")[0];
try {
message = JSON.parse(rawString)
}
catch (e) {
message = { data: [] };
}
resolve();
});
})
const data = message.data;
ready = true;
return {
data: data,
type: type,
time: new Date() - startTime
}
}
s.detectObject = function (buffer, d, tx, frameLocation, callback) {
process(buffer).then((resp) => {
var results = resp.data
//console.log(resp.time)
if (Array.isArray(results) && results[0]) {
var mats = []
results.forEach(function (v) {
mats.push({
x: v.bbox[0],
y: v.bbox[1],
width: v.bbox[2],
height: v.bbox[3],
tag: v.class,
confidence: v.score,
})
})
var isObjectDetectionSeparate = d.mon.detector_pam === '1' && d.mon.detector_use_detect_object === '1'
var width = parseFloat(isObjectDetectionSeparate && d.mon.detector_scale_y_object ? d.mon.detector_scale_y_object : d.mon.detector_scale_y)
var height = parseFloat(isObjectDetectionSeparate && d.mon.detector_scale_x_object ? d.mon.detector_scale_x_object : d.mon.detector_scale_x)
tx({
f: 'trigger',
id: d.id,
ke: d.ke,
details: {
plug: config.plug,
name: 'Tensorflow',
reason: 'object',
matrices: mats,
imgHeight: width,
imgWidth: height,
time: resp.time
}
})
}
callback()
})
}

View File

@ -1,146 +1 @@
//
// Shinobi - Tensorflow Plugin
// Copyright (C) 2016-2025 Moe Alam, moeiscool
// Copyright (C) 2020 Levent Koch, dermodmaster
//
// # Donate
//
// If you like what I am doing here and want me to continue please consider donating :)
// PayPal : paypal@m03.ca
//
// Base Init >>
var fs = require('fs');
var config = require('./conf.json')
var dotenv = require('dotenv').config()
var s
try {
s = require('../pluginBase.js')(__dirname, config)
} catch (err) {
console.log(err)
try {
s = require('./pluginBase.js')(__dirname, config)
} catch (err) {
console.log(err)
return console.log(config.plug, 'Plugin start has failed. pluginBase.js was not found.')
}
}
var ready = false;
const spawn = require('child_process').spawn;
var child = null
function respawn() {
console.log("respawned python",(new Date()))
const theChild = spawn('python3', ['-u', 'detect_image.py']);
var lastStatusLog = new Date();
theChild.on('exit', () => {
child = respawn();
});
theChild.stdout.on('data', function (data) {
var rawString = data.toString('utf8');
if (new Date() - lastStatusLog > 5000) {
lastStatusLog = new Date();
console.log(rawString, new Date());
}
var messages = rawString.split('\n')
messages.forEach((message) => {
if (message === "") return;
var obj = JSON.parse(message)
if (obj.type === "error") {
console.log("Script got error: " + message.data, new Date());
throw message.data;
}
if (obj.type === "info" && obj.data === "ready") {
console.log("set ready true")
ready = true;
} else {
if (obj.type !== "data" && obj.type !== "info") {
throw "Unexpected message: " + rawString;
}
}
})
})
return theChild
}
// Base Init />>
child = respawn();
const emptyDataObject = { data: [], type: undefined, time: 0 };
async function process(buffer, type) {
const startTime = new Date();
if (!ready) {
return emptyDataObject;
}
ready = false;
child.stdin.write(buffer.toString('base64') + '\n');
var message = null;
await new Promise(resolve => {
child.stdout.once('data', (data) => {
var rawString = data.toString('utf8').split("\n")[0];
try {
message = JSON.parse(rawString)
}
catch (e) {
message = { data: [] };
}
resolve();
});
})
const data = message.data;
ready = true;
return {
data: data,
type: type,
time: new Date() - startTime
}
}
s.detectObject = function (buffer, d, tx, frameLocation, callback) {
process(buffer).then((resp) => {
var results = resp.data
//console.log(resp.time)
if (Array.isArray(results) && results[0]) {
var mats = []
results.forEach(function (v) {
mats.push({
x: v.bbox[0],
y: v.bbox[1],
width: v.bbox[2],
height: v.bbox[3],
tag: v.class,
confidence: v.score,
})
})
var isObjectDetectionSeparate = d.mon.detector_pam === '1' && d.mon.detector_use_detect_object === '1'
var width = parseFloat(isObjectDetectionSeparate && d.mon.detector_scale_y_object ? d.mon.detector_scale_y_object : d.mon.detector_scale_y)
var height = parseFloat(isObjectDetectionSeparate && d.mon.detector_scale_x_object ? d.mon.detector_scale_x_object : d.mon.detector_scale_x)
tx({
f: 'trigger',
id: d.id,
ke: d.ke,
details: {
plug: config.plug,
name: 'Tensorflow',
reason: 'object',
matrices: mats,
imgHeight: width,
imgWidth: height,
time: resp.time
}
})
}
callback()
})
}
require('./shinobi-tensorflow-coral.js')