pyUmbral/umbral/cfrags.py

288 lines
9.6 KiB
Python

"""
This file is part of pyUmbral.
pyUmbral is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
pyUmbral is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with pyUmbral. If not, see <https://www.gnu.org/licenses/>.
"""
from typing import Optional, Any
from bytestring_splitter import BytestringSplitter
from umbral.config import default_curve
from umbral.curvebn import CurveBN
from umbral.point import Point
from umbral.signing import Signature
from umbral.curve import Curve
from umbral.random_oracles import hash_to_curvebn, ExtendedKeccak
class CorrectnessProof:
def __init__(self, point_e2: Point, point_v2: Point, point_kfrag_commitment: Point,
point_kfrag_pok: Point, bn_sig: CurveBN, kfrag_signature: Signature,
metadata: Optional[bytes] = None) -> None:
self.point_e2 = point_e2
self.point_v2 = point_v2
self.point_kfrag_commitment = point_kfrag_commitment
self.point_kfrag_pok = point_kfrag_pok
self.bn_sig = bn_sig
self.metadata = metadata
self.kfrag_signature = kfrag_signature
@classmethod
def expected_bytes_length(cls, curve: Optional[Curve] = None):
"""
Returns the size (in bytes) of a CorrectnessProof without the metadata.
If no curve is given, it will use the default curve.
"""
curve = curve if curve is not None else default_curve()
bn_size = CurveBN.expected_bytes_length(curve=curve)
point_size = Point.expected_bytes_length(curve=curve)
return (bn_size * 3) + (point_size * 4)
@classmethod
def from_bytes(cls, data: bytes, curve: Optional[Curve] = None) -> 'CorrectnessProof':
"""
Instantiate CorrectnessProof from serialized data.
"""
curve = curve if curve is not None else default_curve()
bn_size = CurveBN.expected_bytes_length(curve)
point_size = Point.expected_bytes_length(curve)
arguments = {'curve': curve}
splitter = BytestringSplitter(
(Point, point_size, arguments), # point_e2
(Point, point_size, arguments), # point_v2
(Point, point_size, arguments), # point_kfrag_commitment
(Point, point_size, arguments), # point_kfrag_pok
(CurveBN, bn_size, arguments), # bn_sig
(Signature, Signature.expected_bytes_length(curve), arguments), # kfrag_signature
)
components = splitter(data, return_remainder=True)
components.append(components.pop() or None)
return cls(*components)
def to_bytes(self) -> bytes:
"""
Serialize the CorrectnessProof to a bytestring.
"""
e2 = self.point_e2.to_bytes()
v2 = self.point_v2.to_bytes()
kfrag_commitment = self.point_kfrag_commitment.to_bytes()
kfrag_pok = self.point_kfrag_pok.to_bytes()
result = e2 \
+ v2 \
+ kfrag_commitment \
+ kfrag_pok \
+ self.bn_sig.to_bytes() \
+ self.kfrag_signature
result += self.metadata or b''
return result
def __bytes__(self):
return self.to_bytes()
class CapsuleFrag:
def __init__(self,
point_e1: Point,
point_v1: Point,
kfrag_id: bytes,
point_precursor: Point,
proof: Optional[CorrectnessProof] = None) -> None:
self.point_e1 = point_e1
self.point_v1 = point_v1
self.kfrag_id = kfrag_id
self.point_precursor = point_precursor
self.proof = proof
class NoProofProvided(TypeError):
"""
Raised when a cfrag is assessed for correctness, but no proof is attached.
"""
@classmethod
def expected_bytes_length(cls, curve: Optional[Curve] = None) -> int:
"""
Returns the size (in bytes) of a CapsuleFrag given the curve without
the CorrectnessProof.
If no curve is provided, it will use the default curve.
"""
curve = curve if curve is not None else default_curve()
bn_size = CurveBN.expected_bytes_length(curve)
point_size = Point.expected_bytes_length(curve)
return (bn_size * 1) + (point_size * 3)
@classmethod
def from_bytes(cls, data: bytes, curve: Optional[Curve] = None) -> 'CapsuleFrag':
"""
Instantiates a CapsuleFrag object from the serialized data.
"""
curve = curve if curve is not None else default_curve()
bn_size = CurveBN.expected_bytes_length(curve)
point_size = Point.expected_bytes_length(curve)
arguments = {'curve': curve}
splitter = BytestringSplitter(
(Point, point_size, arguments), # point_e1
(Point, point_size, arguments), # point_v1
bn_size, # kfrag_id
(Point, point_size, arguments), # point_precursor
)
components = splitter(data, return_remainder=True)
proof = components.pop() or None
components.append(CorrectnessProof.from_bytes(proof, curve) if proof else None)
return cls(*components)
def to_bytes(self) -> bytes:
"""
Serialize the CapsuleFrag into a bytestring.
"""
e1 = self.point_e1.to_bytes()
v1 = self.point_v1.to_bytes()
precursor = self.point_precursor.to_bytes()
serialized_cfrag = e1 + v1 + self.kfrag_id + precursor
if self.proof is not None:
serialized_cfrag += self.proof.to_bytes()
return serialized_cfrag
def prove_correctness(self,
capsule,
kfrag,
metadata: Optional[bytes] = None):
params = capsule.params
# Check correctness of original ciphertext
if not capsule.verify():
raise capsule.NotValid("Capsule verification failed.")
rk = kfrag.bn_key
t = CurveBN.gen_rand(params.curve)
####
# Here are the formulaic constituents shared with `verify_correctness`.
####
e = capsule.point_e
v = capsule.point_v
e1 = self.point_e1
v1 = self.point_v1
u = params.u
u1 = kfrag.point_commitment
e2 = t * e # type: Any
v2 = t * v # type: Any
u2 = t * u # type: Any
hash_input = [e, e1, e2, v, v1, v2, u, u1, u2]
if metadata is not None:
hash_input.append(metadata)
h = hash_to_curvebn(*hash_input, params=params, hash_class=ExtendedKeccak)
########
z3 = t + h * rk
self.attach_proof(e2, v2, u1, u2, metadata=metadata, z3=z3, kfrag_signature=kfrag.signature_for_bob)
def verify_correctness(self, capsule) -> bool:
if self.proof is None:
raise CapsuleFrag.NoProofProvided
correctness_keys = capsule.get_correctness_keys()
delegating_pubkey = correctness_keys['delegating']
signing_pubkey = correctness_keys['verifying']
receiving_pubkey = correctness_keys['receiving']
params = capsule.params
####
# Here are the formulaic constituents shared with `prove_correctness`.
####
e = capsule.point_e
v = capsule.point_v
e1 = self.point_e1
v1 = self.point_v1
u = params.u
u1 = self.proof.point_kfrag_commitment
e2 = self.proof.point_e2
v2 = self.proof.point_v2
u2 = self.proof.point_kfrag_pok
hash_input = [e, e1, e2, v, v1, v2, u, u1, u2]
if self.proof.metadata is not None:
hash_input.append(self.proof.metadata)
h = hash_to_curvebn(*hash_input, params=params, hash_class=ExtendedKeccak)
########
precursor = self.point_precursor
kfrag_id = self.kfrag_id
validity_input = (kfrag_id, delegating_pubkey, receiving_pubkey, u1, precursor)
kfrag_validity_message = bytes().join(bytes(item) for item in validity_input)
valid_kfrag_signature = self.proof.kfrag_signature.verify(kfrag_validity_message, signing_pubkey)
z3 = self.proof.bn_sig
correct_reencryption_of_e = z3 * e == e2 + (h * e1)
correct_reencryption_of_v = z3 * v == v2 + (h * v1)
correct_rk_commitment = z3 * u == u2 + (h * u1)
return valid_kfrag_signature \
& correct_reencryption_of_e \
& correct_reencryption_of_v \
& correct_rk_commitment
def attach_proof(self,
e2: Point,
v2: Point,
u1: Point,
u2: Point,
z3: CurveBN,
kfrag_signature: Signature,
metadata: Optional[bytes]) -> None:
self.proof = CorrectnessProof(point_e2=e2,
point_v2=v2,
point_kfrag_commitment=u1,
point_kfrag_pok=u2,
bn_sig=z3,
kfrag_signature=kfrag_signature,
metadata=metadata,
)
def __bytes__(self) -> bytes:
return self.to_bytes()
def __repr__(self):
return "CFrag:{}".format(self.point_e1.to_bytes().hex()[2:17])