Use additive notation for scalar multiplication

Fix spacing

Use vector notation on consistency check
pull/27/head
tuxxy 2018-01-18 00:30:36 -07:00
parent 0036d73891
commit 716c4a3b45
1 changed files with 34 additions and 36 deletions

View File

@ -5,6 +5,7 @@ from umbral.bignum import BigNum
from umbral.point import Point from umbral.point import Point
from umbral.utils import poly_eval, lambda_coeff, hash_to_bn, kdf from umbral.utils import poly_eval, lambda_coeff, hash_to_bn, kdf
class UmbralParameters(object): class UmbralParameters(object):
def __init__(self): def __init__(self):
self.curve = ec.SECP256K1() self.curve = ec.SECP256K1()
@ -13,6 +14,7 @@ class UmbralParameters(object):
self.h = Point.gen_rand(self.curve) self.h = Point.gen_rand(self.curve)
self.u = Point.gen_rand(self.curve) self.u = Point.gen_rand(self.curve)
class KFrag(object): class KFrag(object):
def __init__(self, id_, key, x, u1, z1, z2): def __init__(self, id_, key, x, u1, z1, z2):
self.bn_id = id_ self.bn_id = id_
@ -56,7 +58,7 @@ class KFrag(object):
z2 = self.bn_sig2 z2 = self.bn_sig2
x = self.point_eph_ni x = self.point_eph_ni
g_y = (params.g * z2) + (pub_a * z1) g_y = (z2 * params.g) + (z1 * pub_a)
return z1 == hash_to_bn([g_y, self.bn_id, pub_a, pub_b, u1, x], params) return z1 == hash_to_bn([g_y, self.bn_id, pub_a, pub_b, u1, x], params)
@ -66,12 +68,12 @@ class KFrag(object):
# TODO: change this! # TODO: change this!
h = params.h h = params.h
lh_exp = h * self.bn_key lh_exp = self.bn_key * h
rh_exp = vKeys[0] rh_exp = vKeys[0]
i_j = self.bn_id i_j = self.bn_id
for vKey in vKeys[1:]: for vKey in vKeys[1:]:
rh_exp = rh_exp + (vKey * i_j) rh_exp = rh_exp + (i_j * vKey)
i_j = i_j * self.bn_id i_j = i_j * self.bn_id
return lh_exp == rh_exp return lh_exp == rh_exp
@ -150,7 +152,7 @@ class Capsule(object):
s = self.bn_sig s = self.bn_sig
h = hash_to_bn([e, v], params) h = hash_to_bn([e, v], params)
return params.g * s == v + (e * h) return s * params.g == v + (h * e)
def attach_cfrag(self, cfrag: CapsuleFrag): def attach_cfrag(self, cfrag: CapsuleFrag):
self.cfrags[cfrag.bn_kfrag_id] = cfrag self.cfrags[cfrag.bn_kfrag_id] = cfrag
@ -161,13 +163,13 @@ class Capsule(object):
if len(id_cfrag_pairs) > 1: if len(id_cfrag_pairs) > 1:
ids = self.cfrags.keys() ids = self.cfrags.keys()
lambda_0 = lambda_coeff(id_0, ids) lambda_0 = lambda_coeff(id_0, ids)
e = cfrag_0.point_eph_e1 * lambda_0 e = lambda_0 * cfrag_0.point_eph_e1
v = cfrag_0.point_eph_v1 * lambda_0 v = lambda_0 * cfrag_0.point_eph_v1
for id_i,cfrag in id_cfrag_pairs[1:]: for id_i, cfrag in id_cfrag_pairs[1:]:
lambda_i = lambda_coeff(id_i, ids) lambda_i = lambda_coeff(id_i, ids)
e = e + (cfrag.point_eph_e1 * lambda_i) e = e + (lambda_i * cfrag.point_eph_e1)
v = v + (cfrag.point_eph_v1 * lambda_i) v = v + (lambda_i * cfrag.point_eph_v1)
else: else:
e = cfrag_0.point_eph_e1 e = cfrag_0.point_eph_e1
v = cfrag_0.point_eph_v1 v = cfrag_0.point_eph_v1
@ -263,15 +265,15 @@ class PRE(object):
def priv2pub(self, priv): def priv2pub(self, priv):
g = self.params.g g = self.params.g
return g * priv return priv * g
def split_rekey(self, priv_a, pub_b, threshold, N): def split_rekey(self, priv_a, pub_b, threshold, N):
g = self.params.g g = self.params.g
pub_a = g * priv_a pub_a = priv_a * g
x = BigNum.gen_rand(self.params.curve) x = BigNum.gen_rand(self.params.curve)
xcomp = g * x xcomp = x * g
d = hash_to_bn([xcomp, pub_b, pub_b * x], self.params) d = hash_to_bn([xcomp, pub_b, pub_b * x], self.params)
coeffs = [priv_a * (~d)] coeffs = [priv_a * (~d)]
@ -280,17 +282,17 @@ class PRE(object):
h = self.params.h h = self.params.h
u = self.params.u u = self.params.u
vKeys = [h * coeff for coeff in coeffs] vKeys = [coeff * h for coeff in coeffs]
rk_shares = [] rk_shares = []
for _ in range(N): for _ in range(N):
id_kfrag = BigNum.gen_rand(self.params.curve) id_kfrag = BigNum.gen_rand(self.params.curve)
rk = poly_eval(coeffs, id_kfrag) rk = poly_eval(coeffs, id_kfrag)
u1 = u * rk u1 = rk * u
y = BigNum.gen_rand(self.params.curve) y = BigNum.gen_rand(self.params.curve)
z1 = hash_to_bn([g * y, id_kfrag, pub_a, pub_b, u1, xcomp], self.params) z1 = hash_to_bn([y * g, id_kfrag, pub_a, pub_b, u1, xcomp], self.params)
z2 = y - priv_a * z1 z2 = y - priv_a * z1
kFrag = KFrag(id_=id_kfrag, key=rk, x=xcomp, u1=u1, z1=z1, z2=z2) kFrag = KFrag(id_=id_kfrag, key=rk, x=xcomp, u1=u1, z1=z1, z2=z2)
@ -301,16 +303,14 @@ class PRE(object):
def reencrypt(self, kFrag, capsule): def reencrypt(self, kFrag, capsule):
# TODO: Put the assert at the end, but exponentiate by a randon number when false? # TODO: Put the assert at the end, but exponentiate by a randon number when false?
assert capsule.verify(self.params), "Generic Umbral Error" assert capsule.verify(self.params), "Generic Umbral Error"
e1 = capsule.point_eph_e * kFrag.bn_key e1 = kFrag.bn_key * capsule.point_eph_e
v1 = capsule.point_eph_v * kFrag.bn_key v1 = kFrag.bn_key * capsule.point_eph_v
cFrag = CapsuleFrag(e1=e1, v1=v1, id_=kFrag.bn_id, x=kFrag.point_eph_ni) cFrag = CapsuleFrag(e1=e1, v1=v1, id_=kFrag.bn_id, x=kFrag.point_eph_ni)
return cFrag return cFrag
def challenge(self, rk, capsule, cFrag): def challenge(self, rk, capsule, cFrag):
e1 = cFrag.point_eph_e1 e1 = cFrag.point_eph_e1
v1 = cFrag.point_eph_v1 v1 = cFrag.point_eph_v1
@ -321,9 +321,9 @@ class PRE(object):
u1 = rk.point_commitment u1 = rk.point_commitment
t = BigNum.gen_rand(self.params.curve) t = BigNum.gen_rand(self.params.curve)
e2 = e * t e2 = t * e
v2 = v * t v2 = t * v
u2 = u * t u2 = t * u
h = hash_to_bn([e, e1, e2, v, v1, v2, u, u1, u2], self.params) h = hash_to_bn([e, e1, e2, v, v1, v2, u, u1, u2], self.params)
@ -331,7 +331,7 @@ class PRE(object):
ch_resp = ChallengeResponse(e2=e2, v2=v2, u1=u1, u2=u2, z1=rk.bn_sig1, z2=rk.bn_sig2, z3=z3) ch_resp = ChallengeResponse(e2=e2, v2=v2, u1=u1, u2=u2, z1=rk.bn_sig1, z2=rk.bn_sig2, z3=z3)
# Check correctness of original ciphertext (check nº 2) at the end # Check correctness of original ciphertext (check nº 2) at the end
# to avoid timing oracles # to avoid timing oracles
assert capsule.verify(self.params), "Generic Umbral Error" assert capsule.verify(self.params), "Generic Umbral Error"
return ch_resp return ch_resp
@ -358,13 +358,13 @@ class PRE(object):
z2 = challenge_resp.bn_kfrag_sig2 z2 = challenge_resp.bn_kfrag_sig2
z3 = challenge_resp.bn_sig z3 = challenge_resp.bn_sig
g_y = (g * z2) + (pub_a * z1) g_y = (z2 * g) + (z1 * pub_a)
h = hash_to_bn([e, e1, e2, v, v1, v2, u, u1, u2], self.params) h = hash_to_bn([e, e1, e2, v, v1, v2, u, u1, u2], self.params)
check31 = z1 == hash_to_bn([g_y, kfrag_id, pub_a, pub_b, u1, xcomp], self.params) check31 = z1 == hash_to_bn([g_y, kfrag_id, pub_a, pub_b, u1, xcomp], self.params)
check32 = e * z3 == e2 + (e1 * h) check32 = z3 * e == e2 + (h * e1)
check33 = u * z3 == u2 + (u1 * h) check33 = z3 * u == u2 + (h * u1)
return check31 & check32 & check33 return check31 & check32 & check33
@ -373,29 +373,27 @@ class PRE(object):
g = self.params.g g = self.params.g
priv_r = BigNum.gen_rand(self.params.curve) priv_r = BigNum.gen_rand(self.params.curve)
pub_r = g * priv_r pub_r = priv_r * g
priv_u = BigNum.gen_rand(self.params.curve) priv_u = BigNum.gen_rand(self.params.curve)
pub_u = g * priv_u pub_u = priv_u * g
h = hash_to_bn([pub_r, pub_u], self.params) h = hash_to_bn([pub_r, pub_u], self.params)
s = priv_u + (priv_r * h) s = priv_u + (priv_r * h)
shared_key = pub_key * (priv_r + priv_u) shared_key = (priv_r + priv_u) * pub_key
# Key to be used for symmetric encryption # Key to be used for symmetric encryption
key = kdf(shared_key, key_length) key = kdf(shared_key, key_length)
return key, Capsule(point_eph_e=pub_r, point_eph_v=pub_u, bn_sig=s) return key, Capsule(point_eph_e=pub_r, point_eph_v=pub_u, bn_sig=s)
def decapsulate_original(self, priv_key, capsule, key_length=32): def decapsulate_original(self, priv_key, capsule, key_length=32):
"""Derive the same symmetric key""" """Derive the same symmetric key"""
shared_key = (capsule.point_eph_e + capsule.point_eph_v) * priv_key shared_key = priv_key * (capsule.point_eph_e + capsule.point_eph_v)
key = kdf(shared_key, key_length) key = kdf(shared_key, key_length)
# Check correctness of original ciphertext (check nº 2) at the end # Check correctness of original ciphertext (check nº 2) at the end
# to avoid timing oracles # to avoid timing oracles
assert capsule.verify(self.params), "Generic Umbral Error" assert capsule.verify(self.params), "Generic Umbral Error"
return key return key
@ -410,7 +408,7 @@ class PRE(object):
e_prime = recapsule.point_eph_e_prime e_prime = recapsule.point_eph_e_prime
v_prime = recapsule.point_eph_v_prime v_prime = recapsule.point_eph_v_prime
shared_key = (e_prime + v_prime) * d shared_key = d * (e_prime + v_prime)
key = kdf(shared_key, key_length) key = kdf(shared_key, key_length)
e = original_capsule.point_eph_e e = original_capsule.point_eph_e
@ -418,6 +416,6 @@ class PRE(object):
s = original_capsule.bn_sig s = original_capsule.bn_sig
h = hash_to_bn([e, v], self.params) h = hash_to_bn([e, v], self.params)
inv_d = ~d inv_d = ~d
assert orig_pub_key * (s * inv_d) == v_prime + (e_prime * h), "Generic Umbral Error" assert (s * inv_d) * orig_pub_key == (h * e_prime) + v_prime, "Generic Umbral Error"
return key return key