nucypher/nkms/characters.py

541 lines
21 KiB
Python

import asyncio
import binascii
from binascii import hexlify
from logging import getLogger
import msgpack
from apistar import http
from apistar.core import Route
from apistar.frameworks.wsgi import WSGIApp as App
from apistar.http import Response
from kademlia.network import Server
from kademlia.utils import digest
from sqlalchemy.exc import IntegrityError
from nkms.crypto import api as API
from nkms.crypto.api import secure_random, keccak_digest
from nkms.crypto.constants import NOT_SIGNED, NO_DECRYPTION_PERFORMED
from nkms.crypto.powers import CryptoPower, SigningPower, EncryptingPower
from nkms.crypto.signature import Signature
from nkms.crypto.utils import BytestringSplitter
from nkms.keystore.keypairs import Keypair
from nkms.network import blockchain_client
from nkms.network.protocols import dht_value_splitter
from nkms.network.server import NuCypherDHTServer, NuCypherSeedOnlyDHTServer
from nkms.policy.constants import NOT_FROM_ALICE, NON_PAYMENT
class Character(object):
"""
A base-class for any character in our cryptography protocol narrative.
"""
_server = None
_server_class = Server
_default_crypto_powerups = None
_seal = None
def __init__(self, attach_server=True, crypto_power: CryptoPower = None,
crypto_power_ups=[], is_me=True) -> None:
"""
:param attach_server: Whether to attach a Server when this Character is born.
:param crypto_power: A CryptoPower object; if provided, this will be the character's CryptoPower.
:param crypto_power_ups: If crypto_power is not provided, a new CryptoPower will be made and
will consume all of the CryptoPowerUps in this list.
If neither crypto_power nor crypto_power_ups are provided, we give this Character all CryptoPowerUps
listed in their _default_crypto_powerups attribute.
:param is_me: Set this to True when you want this Character to represent the owner of the configuration under
which the program is being run. A Character who is_me can do things that other Characters can't, like run
servers, sign messages, and decrypt messages which are encrypted for them. Typically this will be True
for exactly one Character, but there are scenarios in which its imaginable to be represented by zero Characters
or by more than one Character.
"""
self.log = getLogger("characters")
if crypto_power and crypto_power_ups:
raise ValueError("Pass crypto_power or crypto_power_ups (or neither), but not both.")
if crypto_power:
self._crypto_power = crypto_power
elif crypto_power_ups:
self._crypto_power = CryptoPower(power_ups=crypto_power_ups)
else:
self._crypto_power = CryptoPower(self._default_crypto_powerups)
if is_me:
self._actor_mapping = {}
self._seal = Seal(self)
if attach_server:
self.attach_server()
else:
self._seal = StrangerSeal(self)
def __eq__(self, other):
return bytes(self.seal) == bytes(other.seal)
def __hash__(self):
return int.from_bytes(self.seal, byteorder="big")
class NotFound(KeyError):
"""raised when we try to interact with an actor of whom we haven't learned yet."""
@classmethod
def from_pubkey_sig_bytes(cls, pubkey_sig_bytes):
return cls(is_me=False, crypto_power_ups=[SigningPower(keypair=Keypair.deserialize_key(pubkey_sig_bytes))])
def attach_server(self, ksize=20, alpha=3, id=None, storage=None,
*args, **kwargs) -> None:
self._server = self._server_class(ksize, alpha, id, storage, *args, **kwargs)
@property
def seal(self):
if not self._seal:
raise AttributeError("Seal has not been set up yet.")
else:
return self._seal
@property
def server(self) -> Server:
if self._server:
return self._server
else:
raise RuntimeError("Server hasn't been attached.")
@property
def name(self):
return self.__class__.__name__
def hash(self, message):
return keccak_digest(message)
def learn_about_actor(self, actor):
self._actor_mapping[actor.id()] = actor
def encrypt_for(self, recipient: "Character", cleartext: bytes, sign: bool = True,
sign_cleartext=True) -> tuple:
"""
Looks up recipient actor, finds that actor's pubkey_enc on our keyring, and encrypts for them.
Optionally signs the message as well.
:param recipient: The character whose public key will be used to encrypt cleartext.
:param cleartext: The secret to be encrypted.
:param sign: Whether or not to sign the message.
:param sign_cleartext: When signing, the cleartext is signed if this is True, Otherwise, the resulting ciphertext is signed.
:return: A tuple, (ciphertext, signature). If sign==False, then signature will be NOT_SIGNED.
"""
actor = self._lookup_actor(recipient)
if sign:
if sign_cleartext:
signature = self.seal(cleartext)
ciphertext = self._crypto_power.encrypt_for(actor.public_key(EncryptingPower),
signature + cleartext)
else:
ciphertext = self._crypto_power.encrypt_for(actor.public_key(EncryptingPower),
cleartext)
signature = self.seal(ciphertext)
else:
signature = NOT_SIGNED
ciphertext = self._crypto_power.encrypt_for(actor.public_key(EncryptingPower),
cleartext)
return ciphertext, signature
def verify_from(self, actor_whom_sender_claims_to_be: "Character", message: bytes, signature: Signature = None,
decrypt=False,
signature_is_on_cleartext=False) -> tuple:
"""
Inverse of encrypt_for.
:param actor_that_sender_claims_to_be: A Character instance representing the actor whom the sender claims to be. We check the public key owned by this Character instance to verify.
:param messages: The messages to be verified.
:param decrypt: Whether or not to decrypt the messages.
:param signature_is_on_cleartext: True if we expect the signature to be on the cleartext. Otherwise, we presume that the ciphertext is what is signed.
:return: (Whether or not the signature is valid, the decrypted plaintext or NO_DECRYPTION_PERFORMED)
"""
if not signature and not signature_is_on_cleartext:
raise ValueError("You need to either provide the Signature or decrypt and find it on the cleartext.")
cleartext = NO_DECRYPTION_PERFORMED
if signature_is_on_cleartext:
if decrypt:
cleartext = self._crypto_power.decrypt(message)
signature, message = BytestringSplitter(Signature)(cleartext, return_remainder=True)
else:
raise ValueError(
"Can't look for a signature on the cleartext if we're not decrypting.")
actor = self._lookup_actor(actor_whom_sender_claims_to_be)
return signature.verify(message, actor.seal), cleartext
def _lookup_actor(self, actor: "Character"):
try:
return self._actor_mapping[actor.id()]
except KeyError:
raise self.NotFound("We haven't learned of an actor with ID {}".format(actor.id()))
def id(self):
return hexlify(bytes(self.seal))
def public_key(self, key_class):
try:
return self._crypto_power.public_keys[key_class]
except KeyError:
raise # TODO: Does it make sense to have a specialized exception here? Probably.
class Alice(Character):
_server_class = NuCypherSeedOnlyDHTServer
_default_crypto_powerups = [SigningPower, EncryptingPower]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
from nkms.policy.models import PolicyManagerForAlice # Avoid circular import
self.policy_manager = PolicyManagerForAlice(self)
def find_best_ursula(self):
# TODO: This just finds *some* Ursula - let's have it find a particularly good one.
return list_all_ursulas()[1]
def generate_rekey_frags(self, alice_privkey, bob, m, n):
"""
Generates re-encryption key frags and returns the frags and encrypted
ephemeral key data.
:param alice_privkey: Alice's private key
:param bob_pubkey: Bob's public key
:param m: Minimum number of rekey shares needed to rebuild ciphertext
:param n: Total number of rekey shares to generate
:return: Tuple(kfrags, eph_key_data)
"""
kfrags, eph_key_data = API.ecies_ephemeral_split_rekey(
alice_privkey, bytes(bob.seal.without_metabytes()), m, n)
return (kfrags, eph_key_data)
def grant(self, bob, uri, networky_stuff, m=None, n=None, expiration=None, deposit=None):
if not m:
# TODO: get m from config
raise NotImplementedError
if not n:
# TODO: get n from config
raise NotImplementedError
if not expiration:
# TODO: check default duration in config
raise NotImplementedError
if not deposit:
default_deposit = None # TODO: Check default deposit in config.
if not default_deposit:
deposit = networky_stuff.get_competitive_rate()
if deposit == NotImplemented:
deposit = NON_PAYMENT
policy = self.policy_manager.create_policy_group(bob, uri, m, n)
# We'll find n Ursulas by default. It's possible to "play the field" by trying differet
# deposits and expirations on a limited number of Ursulas.
# Users may decide to inject some market strategies here.
found_ursulas = policy.find_ursulas(networky_stuff, deposit, expiration, num_ursulas=n)
for ursula, contract, result in found_ursulas:
if result.was_accepted: # TODO: Here, we need to assess the result and see if we're actually good to go.
kfrag = policy.assign_kfrag_to_contract(contract)
contract.activate(kfrag, ursula, result)
# TODO: What if there weren't enough Contracts approved to distribute n kfrags? We need to raise NotEnoughQualifiedUrsulas.
policy.enact(networky_stuff) # REST call happens here, as does population of TreasureMap.
return policy
class Bob(Character):
_server_class = NuCypherSeedOnlyDHTServer
_default_crypto_powerups = [SigningPower, EncryptingPower]
def __init__(self, alice=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self._ursulas = {}
self.treasure_maps = {}
if alice:
self.alice = alice
self._saved_work_orders = {}
@property
def alice(self):
if not self._alice:
raise Alice.NotFound
else:
return self._alice
@alice.setter
def alice(self, alice_object):
self.learn_about_actor(alice_object)
self._alice = alice_object
def follow_treasure_map(self, pfrag):
for ursula_interface_id in self.treasure_maps[pfrag]:
# TODO: perform this part concurrently.
getter = self.server.get(ursula_interface_id)
loop = asyncio.get_event_loop()
value = loop.run_until_complete(getter)
signature, ursula_pubkey_sig, hrac, (port, interface, ttl) = dht_value_splitter(value.lstrip(b"uaddr"),
msgpack_remainder=True)
# TODO: If we're going to implement TTL, it will be here.
self._ursulas[ursula_interface_id] = Ursula.as_discovered_on_network(port=port, interface=interface,
pubkey_sig_bytes=ursula_pubkey_sig)
def get_treasure_map(self, policy_group):
dht_key = policy_group.treasure_map_dht_key()
ursula_coro = self.server.get(dht_key)
event_loop = asyncio.get_event_loop()
packed_encrypted_treasure_map = event_loop.run_until_complete(ursula_coro)
_signature_for_ursula, pubkey_sig_alice, hrac, encrypted_treasure_map = dht_value_splitter(
packed_encrypted_treasure_map[5::], msgpack_remainder=True)
verified, cleartext = self.verify_from(self.alice, encrypted_treasure_map,
signature_is_on_cleartext=True, decrypt=True)
alices_signature, packed_node_list = BytestringSplitter(Signature)(cleartext, return_remainder=True)
if not verified:
return NOT_FROM_ALICE
else:
from nkms.policy.models import TreasureMap
self.treasure_maps[policy_group.hrac] = TreasureMap(msgpack.loads(packed_node_list))
return self.treasure_maps[policy_group.hrac]
def generate_work_orders(self, kfrag_hrac, *pfrags, num_ursulas=None):
from nkms.policy.models import WorkOrder # Prevent circular import
try:
treasure_map_to_use = self.treasure_maps[kfrag_hrac]
except KeyError:
raise KeyError("Bob doesn't have a TreasureMap matching the hrac {}".format(kfrag_hrac))
generated_work_orders = {}
if not treasure_map_to_use:
raise ValueError("Bob doesn't have a TreasureMap to match any of these pfrags: {}".format(pfrags))
for ursula_dht_key in treasure_map_to_use:
ursula = self._ursulas[ursula_dht_key]
completed_work_orders_for_this_ursula = self._saved_work_orders.setdefault(ursula_dht_key, [])
pfrags_to_include = []
for pfrag in pfrags:
if not pfrag in sum([wo.pfrags for wo in completed_work_orders_for_this_ursula],
[]): # TODO: This is inane - probably push it down into a WorkOrderHistory concept.
pfrags_to_include.append(pfrag)
if pfrags_to_include:
work_order = WorkOrder.constructed_by_bob(kfrag_hrac, pfrags_to_include, ursula_dht_key, self)
generated_work_orders[ursula_dht_key] = work_order
if num_ursulas is not None:
if num_ursulas == len(generated_work_orders):
break
return generated_work_orders
def get_reencrypted_c_frags(self, networky_stuff, work_order):
cfrags = networky_stuff.reencrypt(work_order)
if not len(work_order) == len(cfrags):
raise ValueError("Ursula gave back the wrong number of cfrags. She's up to something.")
for counter, pfrag in enumerate(work_order.pfrags):
# TODO: Ursula is actually supposed to sign this. See #141.
self._saved_work_orders[work_order.ursula_id].append(work_order)
return cfrags
def get_ursula(self, ursula_id):
return self._ursulas[ursula_id]
class Ursula(Character):
_server_class = NuCypherDHTServer
_default_crypto_powerups = [SigningPower, EncryptingPower]
port = None
interface = None
interface_ttl = 0
def __init__(self, urulsas_keystore=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.keystore = urulsas_keystore
self._rest_app = None
self._work_orders = []
self._contracts = {} # TODO: This needs to actually be a persistent data store. See #127.
@property
def rest_app(self):
if not self._rest_app:
raise AttributeError(
"This Ursula doesn't have a REST app attached. If you want one, init with is_me and attach_server.")
else:
return self._rest_app
@staticmethod
def as_discovered_on_network(port, interface, pubkey_sig_bytes):
ursula = Ursula.from_pubkey_sig_bytes(pubkey_sig_bytes)
ursula.port = port
ursula.interface = interface
return ursula
def attach_server(self, ksize=20, alpha=3, id=None, storage=None,
*args, **kwargs):
if not id:
id = digest(
secure_random(32)) # TODO: Network-wide deterministic ID generation (ie, auction or whatever) #136.
super().attach_server(ksize, alpha, id, storage)
routes = [
Route('/kFrag/{hrac_as_hex}', 'POST', self.set_policy),
Route('/kFrag/{hrac_as_hex}/reencrypt', 'POST', self.reencrypt_via_rest),
]
self._rest_app = App(routes=routes)
def listen(self, port, interface):
self.port = port
self.interface = interface
return self.server.listen(port, interface)
def dht_interface_info(self):
return self.port, self.interface, self.interface_ttl
def interface_dht_key(self):
return self.hash(self.seal + self.interface_hrac())
def interface_dht_value(self):
signature = self.seal(self.interface_hrac())
return b"uaddr" + signature + self.seal + self.interface_hrac() + msgpack.dumps(self.dht_interface_info())
def interface_hrac(self):
return self.hash(msgpack.dumps(self.dht_interface_info()))
def publish_interface_information(self):
if not self.port and self.interface:
raise RuntimeError("Must listen before publishing interface information.")
dht_key = self.interface_dht_key()
value = self.interface_dht_value()
setter = self.server.set(key=dht_key, value=value)
blockchain_client._ursulas_on_blockchain.append(dht_key)
loop = asyncio.get_event_loop()
loop.run_until_complete(setter)
def set_policy(self, hrac_as_hex, request: http.Request):
"""
REST endpoint for setting a kFrag.
TODO: Instead of taking a Request, use the apistar typing system to type a payload and validate / split it.
TODO: Validate that the kfrag being saved is pursuant to an approved Policy (see #121).
"""
from nkms.policy.models import Contract # Avoid circular import
hrac = binascii.unhexlify(hrac_as_hex)
contract = self._contracts[hrac]
contract.add_details_from_rest_payload(request.body, self)
try:
self.keystore.add_kfrag(hrac, contract.kfrag, contract.alices_signature)
except IntegrityError:
raise
# Do something appropriately RESTful (ie, 4xx).
return # A 200, with whatever policy metadata.
def reencrypt_via_rest(self, hrac_as_hex, request: http.Request):
from nkms.policy.models import WorkOrder # Avoid circular import
hrac = binascii.unhexlify(hrac_as_hex)
work_order = WorkOrder.from_rest_payload(hrac, request.body)
kfrag = self.keystore.get_kfrag(hrac) # Careful! :-)
cfrag_byte_stream = b""
for pfrag in work_order.pfrags:
# TODO: Sign the result of this. See #141.
cfrag_byte_stream += API.ecies_reencrypt(kfrag, pfrag.encrypted_key)
self._work_orders.append(work_order) # TODO: Put this in Ursula's datastore
return Response(content=cfrag_byte_stream, content_type="application/octet-stream")
def work_orders(self, bob=None):
"""
TODO: This is better written as a model method for Ursula's datastore.
"""
if not bob:
return self._work_orders
else:
work_orders_from_bob = []
for work_order in self._work_orders:
if work_order.bob == bob:
work_orders_from_bob.append(work_order)
return work_orders_from_bob
def consider_contract(self, contract):
# TODO: This actually needs to be a REST endpoint, with the payload carrying the kfrag hash separately.
# TODO: Make the rest of this logic actually work - do something here to decide if this Contract is worth accepting.
self._contracts[contract.hrac] = contract
from tests.utilities import MockPolicyOfferResponse
return MockPolicyOfferResponse()
class Seal(object):
"""
Can be called to sign something or used to express the signing public key as bytes.
"""
def __init__(self, character):
self.character = character
def __call__(self, *args, **kwargs):
return self.character._crypto_power.sign(*args, **kwargs)
def _as_tuple(self):
return self.character._crypto_power.pubkey_sig_tuple()
def __iter__(seal):
yield from seal._as_tuple()
def __bytes__(self):
return self.character._crypto_power.pubkey_sig_bytes()
def __eq__(self, other):
return other == self._as_tuple() or other == bytes(self)
def __add__(self, other):
return bytes(self) + other
def __radd__(self, other):
return other + bytes(self)
def __len__(self):
return len(bytes(self))
def without_metabytes(self):
return self.character._crypto_power.pubkey_sig_bytes().without_metabytes()
class StrangerSeal(Seal):
"""
Seal of a stranger (ie, can only be used to glean public key, not to sign)
"""
def __call__(self, *args, **kwargs):
raise TypeError(
"This isn't your Seal; it belongs to {} (a Stranger). You can't sign with it.".format(self.character))
def congregate(*characters):
for character in characters:
for newcomer in characters:
character.learn_about_actor(newcomer)