nucypher/nkms/characters.py

602 lines
24 KiB
Python

import asyncio
from contextlib import suppress
from logging import getLogger
import msgpack
import requests
from collections import OrderedDict
from kademlia.network import Server
from kademlia.utils import digest
from typing import Dict, ClassVar
from typing import Union, List
from umbral.keys import UmbralPublicKey
from constant_sorrow import constants, default_constant_splitter
from bytestring_splitter import RepeatingBytestringSplitter
from nkms.blockchain.eth.actors import PolicyAuthor
from nkms.config.configs import KMSConfig
from nkms.crypto.api import secure_random, keccak_digest, encrypt_and_sign
from nkms.crypto.constants import PUBLIC_KEY_LENGTH
from nkms.crypto.kits import UmbralMessageKit
from nkms.crypto.powers import CryptoPower, SigningPower, EncryptingPower, DelegatingPower, NoSigningPower
from nkms.crypto.signature import Signature, signature_splitter, SignatureStamp, StrangerStamp
from nkms.network import blockchain_client
from nkms.network.protocols import dht_value_splitter
from nkms.network.server import NuCypherDHTServer, NuCypherSeedOnlyDHTServer, ProxyRESTServer
class Character(object):
"""
A base-class for any character in our cryptography protocol narrative.
"""
_server = None
_server_class = Server
_default_crypto_powerups = None
_stamp = None
address = "This is a fake address." # TODO: #192
def __init__(self, attach_server=True, crypto_power: CryptoPower=None,
crypto_power_ups=None, is_me=True, config: "KMSConfig"=None) -> None:
"""
:param attach_server: Whether to attach a Server when this Character is
born.
:param crypto_power: A CryptoPower object; if provided, this will be the
character's CryptoPower.
:param crypto_power_ups: If crypto_power is not provided, a new
CryptoPower will be made and will consume all of the CryptoPowerUps
in this list.
If neither crypto_power nor crypto_power_ups are provided, we give this
Character all CryptoPowerUps listed in their _default_crypto_powerups
attribute.
:param is_me: Set this to True when you want this Character to represent
the owner of the configuration under which the program is being run.
A Character who is_me can do things that other Characters can't,
like run servers, sign messages, and decrypt messages which are
encrypted for them. Typically this will be True for exactly one
Character, but there are scenarios in which its imaginable to be
represented by zero Characters or by more than one Character.
"""
# self.config = config if config is not None else KMSConfig.get_config()
self.known_nodes = {}
self.log = getLogger("characters")
if crypto_power and crypto_power_ups:
raise ValueError("Pass crypto_power or crypto_power_ups (or neither), but not both.")
if not crypto_power_ups:
crypto_power_ups = []
if crypto_power:
self._crypto_power = crypto_power
elif crypto_power_ups:
self._crypto_power = CryptoPower(power_ups=crypto_power_ups,
generate_keys_if_needed=is_me)
else:
self._crypto_power = CryptoPower(self._default_crypto_powerups,
generate_keys_if_needed=is_me)
if is_me:
try:
self._stamp = SignatureStamp(self._crypto_power.power_ups(SigningPower).keypair)
except NoSigningPower:
self._stamp = constants.NO_SIGNING_POWER
if attach_server:
self.attach_server()
else:
self._stamp = StrangerStamp(self._crypto_power.power_ups(SigningPower).keypair)
def __eq__(self, other):
return bytes(self.stamp) == bytes(other.stamp)
def __hash__(self):
return int.from_bytes(self.stamp, byteorder="big")
class NotEnoughUrsulas(RuntimeError):
"""
All Characters depend on knowing about enough Ursulas to perform their role.
This exception is raised when a piece of logic can't proceed without more Ursulas.
"""
class SuspiciousActivity(RuntimeError):
"""raised when an action appears to amount to malicious conduct."""
@classmethod
def from_public_keys(cls, powers_and_keys: Dict, *args, **kwargs):
"""
Sometimes we discover a Character and, at the same moment, learn one or
more of their public keys. Here, we take a Dict
(powers_and_key_bytes) in the following format:
{CryptoPowerUp class: public_key_bytes}
Each item in the collection will have the CryptoPowerUp instantiated
with the public_key_bytes, and the resulting CryptoPowerUp instance
consumed by the Character.
"""
crypto_power = CryptoPower()
for power_up, public_key in powers_and_keys.items():
try:
umbral_key = UmbralPublicKey(public_key)
except TypeError:
umbral_key = public_key
crypto_power.consume_power_up(power_up(pubkey=umbral_key))
return cls(is_me=False, crypto_power=crypto_power, *args, **kwargs)
def attach_server(self, ksize=20, alpha=3, id=None,
storage=None, *args, **kwargs) -> None:
if self._server:
raise RuntimeError("Attaching the server twice is almost certainly a bad idea.")
self._server = self._server_class(
ksize, alpha, id, storage, *args, **kwargs)
@property
def stamp(self):
if self._stamp is constants.NO_SIGNING_POWER:
raise NoSigningPower
elif not self._stamp:
raise AttributeError("SignatureStamp has not been set up yet.")
else:
return self._stamp
@property
def server(self) -> Server:
if self._server:
return self._server
else:
raise RuntimeError("Server hasn't been attached.")
@property
def name(self):
return self.__class__.__name__
def encrypt_for(self,
recipient: "Character",
plaintext: bytes,
sign: bool=True,
sign_plaintext=True,
) -> tuple:
"""
Encrypts plaintext for recipient actor. Optionally signs the message as well.
:param recipient: The character whose public key will be used to encrypt
cleartext.
:param plaintext: The secret to be encrypted.
:param sign: Whether or not to sign the message.
:param sign_plaintext: When signing, the cleartext is signed if this is
True, Otherwise, the resulting ciphertext is signed.
:return: A tuple, (ciphertext, signature). If sign==False,
then signature will be NOT_SIGNED.
"""
signer = self.stamp if sign else constants.DO_NOT_SIGN
message_kit, signature = encrypt_and_sign(recipient_pubkey_enc=recipient.public_key(EncryptingPower),
plaintext=plaintext,
signer=signer,
sign_plaintext=sign_plaintext
)
return message_kit, signature
def verify_from(self,
actor_whom_sender_claims_to_be: "Character",
message_kit: Union[UmbralMessageKit, bytes],
signature: Signature=None,
decrypt=False,
) -> tuple:
"""
Inverse of encrypt_for.
:param actor_that_sender_claims_to_be: A Character instance representing
the actor whom the sender claims to be. We check the public key
owned by this Character instance to verify.
:param messages: The messages to be verified.
:param decrypt: Whether or not to decrypt the messages.
:param signature_is_on_cleartext: True if we expect the signature to be
on the cleartext. Otherwise, we presume that the ciphertext is what
is signed.
:return: Whether or not the signature is valid, the decrypted plaintext
or NO_DECRYPTION_PERFORMED
"""
sender_pubkey_sig = actor_whom_sender_claims_to_be.stamp.as_umbral_pubkey()
with suppress(AttributeError):
if message_kit.sender_pubkey_sig:
if not message_kit.sender_pubkey_sig == sender_pubkey_sig:
raise ValueError(
"This MessageKit doesn't appear to have come from {}".format(actor_whom_sender_claims_to_be))
signature_from_kit = None
if decrypt:
# We are decrypting the message; let's do that first and see what the sig header says.
cleartext_with_sig_header = self.decrypt(message_kit)
sig_header, cleartext = default_constant_splitter(cleartext_with_sig_header, return_remainder=True)
if sig_header == constants.SIGNATURE_IS_ON_CIPHERTEXT:
# THe ciphertext is what is signed - note that for later.
message = message_kit.ciphertext
if not signature:
raise ValueError("Can't check a signature on the ciphertext if don't provide one.")
elif sig_header == constants.SIGNATURE_TO_FOLLOW:
# The signature follows in this cleartext - split it off.
signature_from_kit, cleartext = signature_splitter(cleartext,
return_remainder=True)
message = cleartext
else:
# Not decrypting - the message is the object passed in as a message kit. Cast it.
message = bytes(message_kit)
cleartext = constants.NO_DECRYPTION_PERFORMED
if signature and signature_from_kit:
if signature != signature_from_kit:
raise ValueError(
"The MessageKit has a Signature, but it's not the same one you provided. Something's up.")
signature_to_use = signature or signature_from_kit
if signature_to_use:
is_valid = signature_to_use.verify(message, sender_pubkey_sig)
else:
# Meh, we didn't even get a signature. Not much we can do.
is_valid = False
return is_valid, cleartext
"""
Next we have decrypt(), sign(), and generate_self_signed_certificate() - these use the private
keys of their respective powers; any character who has these powers can use these functions.
If they don't have the correct Power, the appropriate PowerUpError is raised.
"""
def decrypt(self, message_kit):
return self._crypto_power.power_ups(EncryptingPower).decrypt(message_kit)
def sign(self, message):
return self._crypto_power.power_ups(SigningPower).sign(message)
def generate_self_signed_certificate(self):
signing_power = self._crypto_power.power_ups(SigningPower)
return signing_power.generate_self_signed_cert(self.stamp.fingerprint().decode())
"""
And finally, some miscellaneous but generally-applicable abilities:
"""
def public_key(self, power_up_class: ClassVar):
"""
Pass a power_up_class, get the public key for this Character which corresponds to that
class.
If the Character doesn't have the power corresponding to that class, raises the
appropriate PowerUpError (ie, NoSigningPower or NoEncryptingPower).
"""
power_up = self._crypto_power.power_ups(power_up_class)
return power_up.public_key()
def learn_about_nodes(self, address, port):
"""
Sends a request to node_url to find out about known nodes.
"""
# TODO: Find out about other known nodes, not just this one. #175
node = Ursula.from_rest_url(address, port)
self.known_nodes[node.interface_dht_key()] = node
class FakePolicyAgent: # TODO: #192
_token = "fake token"
class Alice(Character, PolicyAuthor):
_server_class = NuCypherSeedOnlyDHTServer
_default_crypto_powerups = [SigningPower, EncryptingPower, DelegatingPower]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
PolicyAuthor.__init__(self, self.address, policy_agent=FakePolicyAgent())
def generate_kfrags(self, bob, m, n) -> List:
"""
Generates re-encryption key frags ("KFrags") and returns them.
These KFrags can be used by Ursula to re-encrypt a Capsule for Bob so
that he can activate the Capsule.
:param bob: Bob instance which will be able to decrypt messages re-encrypted with these kfrags.
:param m: Minimum number of kfrags needed to activate a Capsule.
:param n: Total number of kfrags to generate
"""
bob_pubkey_enc = bob.public_key(EncryptingPower)
return self._crypto_power.power_ups(DelegatingPower).generate_kfrags(bob_pubkey_enc, m, n)
def create_policy(self, bob: "Bob", uri: bytes, m: int, n: int):
"""
Create a Policy to share uri with bob.
Generates KFrags and attaches them.
"""
kfrags = self.generate_kfrags(bob, m, n)
from nkms.policy.models import Policy
policy = Policy.from_alice(
alice=self,
bob=bob,
kfrags=kfrags,
uri=uri,
m=m,
)
return policy
def grant(self, bob, uri, networky_stuff,
m=None, n=None, expiration=None, deposit=None):
if not m:
# TODO: get m from config #176
raise NotImplementedError
if not n:
# TODO: get n from config #176
raise NotImplementedError
if not expiration:
# TODO: check default duration in config #176
raise NotImplementedError
if not deposit:
default_deposit = None # TODO: Check default deposit in config. #176
if not default_deposit:
deposit = networky_stuff.get_competitive_rate()
if deposit == NotImplemented:
deposit = constants.NON_PAYMENT(b"0000000")
policy = self.create_policy(bob, uri, m, n)
# We'll find n Ursulas by default. It's possible to "play the field"
# by trying differet
# deposits and expirations on a limited number of Ursulas.
# Users may decide to inject some market strategies here.
found_ursulas = policy.find_ursulas(networky_stuff, deposit,
expiration, num_ursulas=n)
policy.match_kfrags_to_found_ursulas(found_ursulas)
# REST call happens here, as does population of TreasureMap.
policy.enact(networky_stuff)
return policy # Now with TreasureMap affixed!
class Bob(Character):
_server_class = NuCypherSeedOnlyDHTServer
_default_crypto_powerups = [SigningPower, EncryptingPower]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.treasure_maps = {}
from nkms.policy.models import WorkOrderHistory # Need a bigger strategy to avoid circulars.
self._saved_work_orders = WorkOrderHistory()
def follow_treasure_map(self, hrac):
for ursula_interface_id in self.treasure_maps[hrac]:
if ursula_interface_id in self.known_nodes:
# If we already know about this Ursula,
# we needn't learn about it again.
continue
# TODO: perform this part concurrently.
value = self.server.get_now(ursula_interface_id)
# TODO: Make this much prettier
header, signature, ursula_pubkey_sig, _hrac, (
port, interface, ttl) = dht_value_splitter(value, msgpack_remainder=True)
if header != constants.BYTESTRING_IS_URSULA_IFACE_INFO:
raise TypeError("Unknown DHT value. How did this get on the network?")
# TODO: If we're going to implement TTL, it will be here.
self.known_nodes[ursula_interface_id] = \
Ursula.as_discovered_on_network(
dht_port=port,
dht_interface=interface,
powers_and_keys=({SigningPower: ursula_pubkey_sig})
)
def get_treasure_map(self, policy, networky_stuff, using_dht=False):
map_id = policy.treasure_map_dht_key()
if using_dht:
ursula_coro = self.server.get(map_id)
event_loop = asyncio.get_event_loop()
packed_encrypted_treasure_map = event_loop.run_until_complete(ursula_coro)
else:
if not self.known_nodes:
# TODO: Try to find more Ursulas on the blockchain.
raise self.NotEnoughUrsulas
tmap_message_kit = self.get_treasure_map_from_known_ursulas(networky_stuff, map_id)
verified, packed_node_list = self.verify_from(
policy.alice, tmap_message_kit,
decrypt=True
)
if not verified:
return constants.NOT_FROM_ALICE
else:
from nkms.policy.models import TreasureMap
treasure_map = TreasureMap(msgpack.loads(packed_node_list))
self.treasure_maps[policy.hrac()] = treasure_map
return treasure_map
def get_treasure_map_from_known_ursulas(self, networky_stuff, map_id):
"""
Iterate through swarm, asking for the TreasureMap.
Return the first one who has it.
TODO: What if a node gives a bunk TreasureMap?
"""
from nkms.network.protocols import dht_value_splitter
for node in self.known_nodes.values():
response = networky_stuff.get_treasure_map_from_node(node, map_id)
if response.status_code == 200 and response.content:
# TODO: Make this prettier
header, _signature_for_ursula, pubkey_sig_alice, hrac, encrypted_treasure_map = \
dht_value_splitter(response.content, return_remainder=True)
tmap_messaage_kit = UmbralMessageKit.from_bytes(encrypted_treasure_map)
return tmap_messaage_kit
else:
assert False
def generate_work_orders(self, kfrag_hrac, *capsules, num_ursulas=None):
from nkms.policy.models import WorkOrder # Prevent circular import
try:
treasure_map_to_use = self.treasure_maps[kfrag_hrac]
except KeyError:
raise KeyError(
"Bob doesn't have a TreasureMap matching the hrac {}".format(kfrag_hrac))
generated_work_orders = OrderedDict()
if not treasure_map_to_use:
raise ValueError(
"Bob doesn't have a TreasureMap to match any of these capsules: {}".format(
capsules))
for ursula_dht_key in treasure_map_to_use:
ursula = self.known_nodes[ursula_dht_key]
capsules_to_include = []
for capsule in capsules:
if not capsule in self._saved_work_orders[ursula_dht_key]:
capsules_to_include.append(capsule)
if capsules_to_include:
work_order = WorkOrder.construct_by_bob(
kfrag_hrac, capsules_to_include, ursula, self)
generated_work_orders[ursula_dht_key] = work_order
self._saved_work_orders[ursula_dht_key][capsule] = work_order
if num_ursulas is not None:
if num_ursulas == len(generated_work_orders):
break
return generated_work_orders
def get_reencrypted_c_frags(self, networky_stuff, work_order):
cfrags = networky_stuff.reencrypt(work_order)
if not len(work_order) == len(cfrags):
raise ValueError("Ursula gave back the wrong number of cfrags. She's up to something.")
for counter, capsule in enumerate(work_order.capsules):
# TODO: Ursula is actually supposed to sign this. See #141.
# TODO: Maybe just update the work order here instead of setting it anew.
work_orders_by_ursula = self._saved_work_orders[bytes(work_order.ursula.stamp)]
work_orders_by_ursula[capsule] = work_order
return cfrags
def get_ursula(self, ursula_id):
return self._ursulas[ursula_id]
class Ursula(Character, ProxyRESTServer):
_server_class = NuCypherDHTServer
_alice_class = Alice
_default_crypto_powerups = [SigningPower, EncryptingPower]
def __init__(self, dht_port=None, dht_interface=None, dht_ttl=0,
rest_address=None, rest_port=None, db_name=None,
*args, **kwargs):
self.dht_port = dht_port
self.dht_interface = dht_interface
self.dht_ttl = 0
self._work_orders = []
ProxyRESTServer.__init__(self, rest_address, rest_port, db_name)
super().__init__(*args, **kwargs)
@property
def rest_app(self):
if not self._rest_app:
raise AttributeError(
"This Ursula doesn't have a REST app attached. If you want one, init with is_me and attach_server.")
else:
return self._rest_app
@classmethod
def as_discovered_on_network(cls, dht_port, dht_interface,
rest_address=None, rest_port=None,
powers_and_keys=()):
# TODO: We also need the encrypting public key here.
ursula = cls.from_public_keys(powers_and_keys)
ursula.dht_port = dht_port
ursula.dht_interface = dht_interface
ursula.rest_address = rest_address
ursula.rest_port = rest_port
return ursula
@classmethod
def from_rest_url(cls, address, port):
response = requests.get("{}:{}/public_keys".format(address, port), verify=False) # TODO: TLS-only.
if not response.status_code == 200:
raise RuntimeError("Got a bad response: {}".format(response))
key_splitter = RepeatingBytestringSplitter(
(UmbralPublicKey, PUBLIC_KEY_LENGTH))
signing_key, encrypting_key = key_splitter(response.content)
stranger_ursula_from_public_keys = cls.from_public_keys(
{SigningPower: signing_key, EncryptingPower: encrypting_key},
rest_address=address,
rest_port=port
)
return stranger_ursula_from_public_keys
def attach_server(self, ksize=20, alpha=3, id=None,
storage=None, *args, **kwargs):
# TODO: Network-wide deterministic ID generation (ie, auction or
# whatever) See #136.
if not id:
id = digest(secure_random(32))
super().attach_server(ksize, alpha, id, storage)
self.attach_rest_server(db_name=self.db_name)
def listen(self):
return self.server.listen(self.dht_port, self.dht_interface)
def dht_interface_info(self):
return self.dht_port, self.dht_interface, self.dht_ttl
def interface_dht_key(self):
return bytes(self.stamp)
# return self.InterfaceDHTKey(self.stamp, self.interface_hrac())
def interface_dht_value(self):
signature = self.stamp(self.interface_hrac())
return (
constants.BYTESTRING_IS_URSULA_IFACE_INFO + signature + self.stamp + self.interface_hrac()
+ msgpack.dumps(self.dht_interface_info())
)
def interface_hrac(self):
return keccak_digest(msgpack.dumps(self.dht_interface_info()))
def publish_dht_information(self):
if not self.dht_port and self.dht_interface:
raise RuntimeError("Must listen before publishing interface information.")
dht_key = self.interface_dht_key()
value = self.interface_dht_value()
setter = self.server.set(key=dht_key, value=value)
blockchain_client._ursulas_on_blockchain.append(dht_key)
loop = asyncio.get_event_loop()
loop.run_until_complete(setter)
def work_orders(self, bob=None):
"""
TODO: This is better written as a model method for Ursula's datastore.
"""
if not bob:
return self._work_orders
else:
work_orders_from_bob = []
for work_order in self._work_orders:
if work_order.bob == bob:
work_orders_from_bob.append(work_order)
return work_orders_from_bob