137 lines
5.0 KiB
Python
137 lines
5.0 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright 2019 Mycroft AI Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import re
|
|
from glob import glob
|
|
from os import remove
|
|
|
|
from os.path import isfile, splitext, join
|
|
|
|
import numpy
|
|
# Optimizer blackhat
|
|
from bbopt import BlackBoxOptimizer
|
|
from pprint import pprint
|
|
from prettyparse import create_parser
|
|
from shutil import rmtree
|
|
from typing import Any
|
|
|
|
from precise.model import ModelParams, create_model
|
|
from precise.train_data import TrainData
|
|
from precise.scripts.train import Trainer
|
|
|
|
usage = '''
|
|
Use black box optimization to tune model hyperparameters
|
|
|
|
:-t --trials-name str -
|
|
Filename to save hyperparameter optimization trials in
|
|
'.bbopt.json' will automatically be appended
|
|
|
|
:-c --cycles int 20
|
|
Number of cycles of optimization to run
|
|
|
|
:-m --model str .cache/optimized.net
|
|
Model to load from
|
|
...
|
|
'''
|
|
|
|
|
|
class OptimizeTrainer(Trainer):
|
|
usage = re.sub(r'.*:model str.*\n.*\n', '', Trainer.usage)
|
|
|
|
def __init__(self):
|
|
super().__init__(create_parser(usage))
|
|
self.bb = BlackBoxOptimizer(file=self.args.trials_name)
|
|
if not self.test:
|
|
data = TrainData.from_both(self.args.tags_file, self.args.tags_folder, self.args.folder)
|
|
_, self.test = data.load(False, True)
|
|
|
|
from keras.callbacks import ModelCheckpoint
|
|
for i in list(self.callbacks):
|
|
if isinstance(i, ModelCheckpoint):
|
|
self.callbacks.remove(i)
|
|
|
|
def process_args(self, args: Any):
|
|
model_parts = glob(splitext(args.model)[0] + '.*')
|
|
if len(model_parts) < 5:
|
|
for name in model_parts:
|
|
if isfile(name):
|
|
remove(name)
|
|
else:
|
|
rmtree(name)
|
|
args.trials_name = args.trials_name.replace('.bbopt.json', '').replace('.json', '')
|
|
if not args.trials_name:
|
|
if isfile(join('.cache', 'trials.bbopt.json')):
|
|
remove(join('.cache', 'trials.bbopt.json'))
|
|
args.trials_name = join('.cache', 'trials')
|
|
|
|
def run(self):
|
|
print('Writing to:', self.args.trials_name + '.bbopt.json')
|
|
for i in range(self.args.cycles):
|
|
self.bb.run(backend="random")
|
|
print("\n= %d = (example #%d)" % (i + 1, len(self.bb.get_data()["examples"]) + 1))
|
|
|
|
params = ModelParams(
|
|
recurrent_units=self.bb.randint("units", 1, 70, guess=50),
|
|
dropout=self.bb.uniform("dropout", 0.1, 0.9, guess=0.6),
|
|
extra_metrics=self.args.extra_metrics,
|
|
skip_acc=self.args.no_validation,
|
|
loss_bias=1.0 - self.args.sensitivity
|
|
)
|
|
print('Testing with:', params)
|
|
model = create_model(self.args.model, params)
|
|
model.fit(
|
|
*self.sampled_data, batch_size=self.args.batch_size,
|
|
epochs=self.epoch + self.args.epochs,
|
|
validation_data=self.test * (not self.args.no_validation),
|
|
callbacks=self.callbacks, initial_epoch=self.epoch,
|
|
)
|
|
resp = model.evaluate(*self.test, batch_size=self.args.batch_size)
|
|
if not isinstance(resp, (list, tuple)):
|
|
resp = [resp, None]
|
|
test_loss, test_acc = resp
|
|
predictions = model.predict(self.test[0], batch_size=self.args.batch_size)
|
|
|
|
num_false_positive = numpy.sum(predictions * (1 - self.test[1]) > 0.5)
|
|
num_false_negative = numpy.sum((1 - predictions) * self.test[1] > 0.5)
|
|
false_positives = num_false_positive / numpy.sum(self.test[1] < 0.5)
|
|
false_negatives = num_false_negative / numpy.sum(self.test[1] > 0.5)
|
|
|
|
from math import exp
|
|
param_score = 1.0 / (1.0 + exp((model.count_params() - 11000) / 2000))
|
|
fitness = param_score * (1.0 - 0.2 * false_negatives - 0.8 * false_positives)
|
|
|
|
self.bb.remember({
|
|
"test loss": test_loss,
|
|
"test accuracy": test_acc,
|
|
"false positive%": false_positives,
|
|
"false negative%": false_negatives,
|
|
"fitness": fitness
|
|
})
|
|
|
|
print("False positive: ", false_positives * 100, "%")
|
|
|
|
self.bb.maximize(fitness)
|
|
pprint(self.bb.get_current_run())
|
|
best_example = self.bb.get_optimal_run()
|
|
print("\n= BEST = (example #%d)" % self.bb.get_data()["examples"].index(best_example))
|
|
pprint(best_example)
|
|
|
|
|
|
def main():
|
|
OptimizeTrainer().run()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|