mycroft-precise/precise/scripts/test.py

72 lines
2.2 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from prettyparse import create_parser
from precise.network_runner import Listener
from precise.params import inject_params
from precise.stats import Stats
from precise.train_data import TrainData
usage = '''
Test a model against a dataset
:model str
Either Keras (.net) or TensorFlow (.pb) model to test
:-u --use-train
Evaluate training data instead of test data
:-nf --no-filenames
Don't print out the names of files that failed
:-t --threshold float 0.5
Network output required to be considered an activation
...
'''
def main():
args = TrainData.parse_args(create_parser(usage))
inject_params(args.model)
data = TrainData.from_both(args.tags_file, args.tags_folder, args.folder)
train, test = data.load(args.use_train, not args.use_train, shuffle=False)
inputs, targets = train if args.use_train else test
filenames = sum(data.train_files if args.use_train else data.test_files, [])
predictions = Listener.find_runner(args.model)(args.model).predict(inputs)
stats = Stats(predictions, targets, filenames)
print('Data:', data)
if not args.no_filenames:
fp_files = stats.calc_filenames(False, True, args.threshold)
fn_files = stats.calc_filenames(False, False, args.threshold)
print('=== False Positives ===')
print('\n'.join(fp_files))
print()
print('=== False Negatives ===')
print('\n'.join(fn_files))
print()
print(stats.counts_str(args.threshold))
print()
print(stats.summary_str(args.threshold))
if __name__ == '__main__':
main()