48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
# Copyright (c) 2017 Mycroft AI Inc.
|
|
from os.path import isfile
|
|
from typing import *
|
|
|
|
from precise.functions import load_keras, false_pos, false_neg, weighted_log_loss
|
|
from precise.params import inject_params, pr
|
|
|
|
lstm_units = 20
|
|
|
|
|
|
def load_precise_model(model_name: str) -> Any:
|
|
"""Loads a Keras model from file, handling custom loss function"""
|
|
if not model_name.endswith('.net'):
|
|
print('Warning: Unknown model type, ', model_name)
|
|
|
|
inject_params(model_name)
|
|
return load_keras().models.load_model(model_name)
|
|
|
|
|
|
def create_model(model_name: str, skip_acc=False, extra_metrics=False) -> Any:
|
|
"""
|
|
Load or create a precise model
|
|
|
|
Args:
|
|
model_name: Name of model
|
|
skip_acc: Whether to skip accuracy calculation while training
|
|
|
|
Returns:
|
|
model: Loaded Keras model
|
|
"""
|
|
if isfile(model_name):
|
|
print('Loading from ' + model_name + '...')
|
|
model = load_precise_model(model_name)
|
|
else:
|
|
from keras.layers.core import Dense
|
|
from keras.layers.recurrent import GRU
|
|
from keras.models import Sequential
|
|
|
|
model = Sequential()
|
|
model.add(GRU(lstm_units, activation='linear', input_shape=(pr.n_features, pr.feature_size),
|
|
dropout=0.3, name='net'))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
|
|
load_keras()
|
|
metrics = ['accuracy'] + extra_metrics * [false_pos, false_neg]
|
|
model.compile('rmsprop', weighted_log_loss, metrics=(not skip_acc) * metrics)
|
|
return model
|