mycroft-precise/precise/model.py

48 lines
1.5 KiB
Python

# Copyright (c) 2017 Mycroft AI Inc.
from os.path import isfile
from typing import *
from precise.functions import load_keras, false_pos, false_neg, weighted_log_loss
from precise.params import inject_params, pr
lstm_units = 20
def load_precise_model(model_name: str) -> Any:
"""Loads a Keras model from file, handling custom loss function"""
if not model_name.endswith('.net'):
print('Warning: Unknown model type, ', model_name)
inject_params(model_name)
return load_keras().models.load_model(model_name)
def create_model(model_name: str, skip_acc=False, extra_metrics=False) -> Any:
"""
Load or create a precise model
Args:
model_name: Name of model
skip_acc: Whether to skip accuracy calculation while training
Returns:
model: Loaded Keras model
"""
if isfile(model_name):
print('Loading from ' + model_name + '...')
model = load_precise_model(model_name)
else:
from keras.layers.core import Dense
from keras.layers.recurrent import GRU
from keras.models import Sequential
model = Sequential()
model.add(GRU(lstm_units, activation='linear', input_shape=(pr.n_features, pr.feature_size),
dropout=0.3, name='net'))
model.add(Dense(1, activation='sigmoid'))
load_keras()
metrics = ['accuracy'] + extra_metrics * [false_pos, false_neg]
model.compile('rmsprop', weighted_log_loss, metrics=(not skip_acc) * metrics)
return model