mycroft-precise/precise/vectorization.py

73 lines
2.1 KiB
Python

# Copyright (c) 2017 Mycroft AI Inc.
from typing import *
import numpy as np
from precise.params import pr
from precise.util import load_audio
inhibit_t = 0.4
inhibit_dist_t = 1.0
inhibit_hop_t = 0.1
def vectorize_raw(audio: np.ndarray) -> np.ndarray:
"""Turns audio into feature vectors, without clipping for length"""
from speechpy.feature import mfcc
return mfcc(audio, pr.sample_rate, pr.window_t, pr.hop_t, pr.n_mfcc, pr.n_filt, pr.n_fft)
def vectorize(audio: np.ndarray) -> np.ndarray:
"""
Args:
audio: Audio verified to be of `sample_rate`
Returns:
array<float>: Vector representation of audio
"""
if len(audio) > pr.max_samples:
audio = audio[-pr.max_samples:]
features = vectorize_raw(audio)
if len(features) < pr.n_features:
features = np.concatenate(
[np.zeros((pr.n_features - len(features), len(features[0]))), features])
if len(features) > pr.n_features:
features = features[-pr.n_features:]
return features
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray:
"""
Returns an array of inputs generated from the
keyword audio that shouldn't cause an activation
"""
def samp(x):
return int(pr.sample_rate * x)
inputs = []
for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)):
if len(audio) - offset < samp(pr.buffer_t / 2.):
break
inputs.append(vectorize(audio[:-offset]))
return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))
def load_vector(name: str, vectorizer: Callable = vectorize) -> np.ndarray:
"""Loads and caches a vector input from a wav or npy file"""
import os
save_name = name if name.endswith('.npy') else os.path.join('.cache', str(abs(hash(pr))),
vectorizer.__name__ + '.' + name + '.npy')
if os.path.isfile(save_name):
return np.load(save_name)
print('Loading ' + name + '...')
os.makedirs(os.path.dirname(save_name), exist_ok=True)
vec = vectorizer(load_audio(name))
np.save(save_name, vec)
return vec