mycroft-precise/precise/scripts/test.py

84 lines
2.4 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2017 Mycroft AI Inc.
from prettyparse import create_parser
from precise.model import load_precise_model
from precise.params import inject_params
from precise.train_data import TrainData
usage = '''
Test a model against a dataset
:model str
Keras model file (.net) to test
:-t --use-train
Evaluate training data instead of test data
:-nf --no-filenames
Don't print out the names of files that failed
...
'''
def show_stats(false_pos, false_neg, true_pos, true_neg, show_filenames):
num_correct = len(true_pos) + len(true_neg)
total = num_correct + len(false_pos) + len(false_neg)
def prc(a: int, b: int): # Rounded percent
return round(100.0 * (b and a / b), 2)
if show_filenames:
print('=== False Positives ===')
for i in false_pos:
print(i)
print()
print('=== False Negatives ===')
for i in false_neg:
print(i)
print()
print('=== Counts ===')
print('False Positives:', len(false_pos))
print('True Negatives:', len(true_neg))
print('False Negatives:', len(false_neg))
print('True Positives:', len(true_pos))
print()
print('=== Summary ===')
print(num_correct, "out of", total)
print(prc(num_correct, total), "%")
print()
print(prc(len(false_pos), len(false_pos) + len(true_neg)), "% false positives")
print(prc(len(false_neg), len(false_neg) + len(true_pos)), "% false negatives")
def main():
args = TrainData.parse_args(create_parser(usage))
inject_params(args.model)
data = TrainData.from_both(args.db_file, args.db_folder, args.data_dir)
train, test = data.load(args.use_train, not args.use_train)
inputs, targets = train if args.use_train else test
filenames = sum(data.train_files if args.use_train else data.test_files, [])
predictions = load_precise_model(args.model).predict(inputs)
true_pos, true_neg = [], []
false_pos, false_neg = [], []
for name, target, prediction in zip(filenames, targets, predictions):
{
(True, False): false_pos,
(True, True): true_pos,
(False, True): false_neg,
(False, False): true_neg
}[prediction[0] > 0.5, target[0] > 0.5].append(name)
print('Data:', data)
show_stats(false_pos, false_neg, true_pos, true_neg, not args.no_filenames)
if __name__ == '__main__':
main()