74 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
#!/usr/bin/env python3
 | 
						|
# Copyright (c) 2017 Mycroft AI Inc.
 | 
						|
import wave
 | 
						|
from subprocess import check_output, PIPE
 | 
						|
 | 
						|
from prettyparse import create_parser
 | 
						|
 | 
						|
from precise.pocketsphinx.listener import PocketsphinxListener
 | 
						|
from precise.scripts.test import show_stats
 | 
						|
from precise.train_data import TrainData
 | 
						|
 | 
						|
usage = '''
 | 
						|
    Test a dataset using Pocketsphinx
 | 
						|
    
 | 
						|
    :key_phrase str
 | 
						|
        Key phrase composed of words from dictionary
 | 
						|
    
 | 
						|
    :dict_file str
 | 
						|
        Filename of dictionary with word pronunciations
 | 
						|
    
 | 
						|
    :hmm_folder str
 | 
						|
        Folder containing hidden markov model
 | 
						|
    
 | 
						|
    :-th --threshold str 1e-90
 | 
						|
        Threshold for activations
 | 
						|
    
 | 
						|
    :-t --use-train
 | 
						|
        Evaluate training data instead of test data
 | 
						|
    
 | 
						|
    :-nf --no-filenames
 | 
						|
        Don't show the names of files that failed
 | 
						|
    
 | 
						|
    ...
 | 
						|
'''
 | 
						|
 | 
						|
 | 
						|
def eval_file(filename) -> float:
 | 
						|
    transcription = check_output(
 | 
						|
        ['pocketsphinx_continuous', '-kws_threshold', '1e-20', '-keyphrase', 'hey my craft',
 | 
						|
         '-infile', filename], stderr=PIPE)
 | 
						|
    return float(bool(transcription) and not transcription.isspace())
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    args = TrainData.parse_args(create_parser(usage))
 | 
						|
    data = TrainData.from_both(args.db_file, args.db_folder, args.data_dir)
 | 
						|
    print('Data:', data)
 | 
						|
 | 
						|
    listener = PocketsphinxListener(args.key_phrase, args.dict_file, args.hmm_folder,
 | 
						|
                                    args.threshold)
 | 
						|
 | 
						|
    def run_test(filenames, name):
 | 
						|
        print()
 | 
						|
        print('===', name, '===')
 | 
						|
        negatives, positives = [], []
 | 
						|
        for filename in filenames:
 | 
						|
            with wave.open(filename) as wf:
 | 
						|
                frames = wf.readframes(wf.getnframes())
 | 
						|
            out = listener.found_wake_word(frames)
 | 
						|
            {False: negatives, True: positives}[out].append(filename)
 | 
						|
            print('!' if out else '.', end='', flush=True)
 | 
						|
        print()
 | 
						|
        return negatives, positives
 | 
						|
 | 
						|
    data_files = data.train_files if args.use_train else data.test_files
 | 
						|
    false_neg, true_pos = run_test(data_files[0], 'Keyword')
 | 
						|
    true_neg, false_pos = run_test(data_files[1], 'Not Keyword')
 | 
						|
 | 
						|
    show_stats(false_pos, false_neg, true_pos, true_neg, not args.no_filenames)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    main()
 |