104 lines
3.2 KiB
Python
104 lines
3.2 KiB
Python
# Copyright 2018 Mycroft AI Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import hashlib
|
|
import numpy as np
|
|
from typing import *
|
|
|
|
from precise.params import pr
|
|
from precise.util import load_audio
|
|
|
|
inhibit_t = 0.4
|
|
inhibit_dist_t = 1.0
|
|
inhibit_hop_t = 0.1
|
|
|
|
|
|
def vectorize_raw(audio: np.ndarray) -> np.ndarray:
|
|
"""Turns audio into feature vectors, without clipping for length"""
|
|
from speechpy.feature import mfcc
|
|
if len(audio) == 0:
|
|
raise ValueError('Cannot vectorize empty audio!')
|
|
return mfcc(audio, pr.sample_rate, pr.window_t, pr.hop_t, pr.n_mfcc, pr.n_filt, pr.n_fft)
|
|
|
|
|
|
def add_deltas(features: np.ndarray) -> np.ndarray:
|
|
deltas = np.zeros_like(features)
|
|
for i in range(1, len(features)):
|
|
deltas[i] = features[i] - features[i - 1]
|
|
|
|
return np.concatenate([features, deltas], -1)
|
|
|
|
|
|
def vectorize(audio: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Args:
|
|
audio: Audio verified to be of `sample_rate`
|
|
|
|
Returns:
|
|
array<float>: Vector representation of audio
|
|
"""
|
|
if len(audio) > pr.max_samples:
|
|
audio = audio[-pr.max_samples:]
|
|
features = vectorize_raw(audio)
|
|
if len(features) < pr.n_features:
|
|
features = np.concatenate([
|
|
np.zeros((pr.n_features - len(features), len(features[0]))),
|
|
features
|
|
])
|
|
if len(features) > pr.n_features:
|
|
features = features[-pr.n_features:]
|
|
|
|
return features
|
|
|
|
|
|
def vectorize_delta(audio: np.ndarray) -> np.ndarray:
|
|
return add_deltas(vectorize(audio))
|
|
|
|
|
|
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Returns an array of inputs generated from the
|
|
wake word audio that shouldn't cause an activation
|
|
"""
|
|
|
|
def samp(x):
|
|
return int(pr.sample_rate * x)
|
|
|
|
inputs = []
|
|
for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)):
|
|
if len(audio) - offset < samp(pr.buffer_t / 2.):
|
|
break
|
|
inputs.append(vectorize(audio[:-offset]))
|
|
return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))
|
|
|
|
|
|
def load_vector(name: str, vectorizer: Callable = None) -> np.ndarray:
|
|
"""Loads and caches a vector input from a wav or npy file"""
|
|
import os
|
|
vectorizer = vectorizer or (vectorize_delta if pr.use_delta else vectorize)
|
|
|
|
save_name = name if name.endswith('.npy') else os.path.join(
|
|
'.cache', hashlib.md5(
|
|
str(sorted(pr.__dict__.values())).encode()
|
|
).hexdigest(), vectorizer.__name__ + '.' + name + '.npy')
|
|
|
|
if os.path.isfile(save_name):
|
|
return np.load(save_name)
|
|
|
|
print('Loading ' + name + '...')
|
|
os.makedirs(os.path.dirname(save_name), exist_ok=True)
|
|
|
|
vec = vectorizer(load_audio(name))
|
|
np.save(save_name, vec)
|
|
return vec
|