53 lines
1.5 KiB
Python
Executable File
53 lines
1.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) 2017 Mycroft AI Inc.
|
|
import os
|
|
import sys
|
|
|
|
from prettyparse import create_parser
|
|
|
|
from precise import __version__
|
|
from precise.network_runner import Listener
|
|
|
|
usage = '''
|
|
stdin should be a stream of raw int16 audio, written in
|
|
groups of CHUNK_SIZE samples. If no CHUNK_SIZE is given
|
|
it will read until EOF. For every chunk, an inference
|
|
will be given via stdout as a float string, one per line
|
|
|
|
:model_name str
|
|
Keras or TensorFlow model to read from
|
|
|
|
...
|
|
'''
|
|
|
|
|
|
def main():
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
stdout = sys.stdout
|
|
sys.stdout = sys.stderr
|
|
|
|
parser = create_parser(usage)
|
|
parser.add_argument('-v', '--version', action='version', version=__version__)
|
|
parser.add_argument('chunk_size', type=int, nargs='?', default=-1,
|
|
help='Number of samples to read before making a prediction.'
|
|
'Higher values are less computationally expensive')
|
|
parser.usage = parser.format_usage().strip().replace('usage: ', '') + ' < audio.wav'
|
|
args = parser.parse_args()
|
|
|
|
if sys.stdin.isatty():
|
|
parser.error('Please pipe audio via stdin using < audio.wav')
|
|
|
|
listener = Listener(args.model_name, args.chunk_size)
|
|
|
|
try:
|
|
while True:
|
|
conf = listener.update(sys.stdin.buffer)
|
|
stdout.buffer.write((str(conf) + '\n').encode('ascii'))
|
|
stdout.buffer.flush()
|
|
except (EOFError, KeyboardInterrupt):
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|