mycroft-precise/precise/scripts/train_sampled.py

97 lines
3.5 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from itertools import islice
from fitipy import Fitipy
from prettyparse import create_parser
from precise.scripts.train import Trainer
from precise.util import calc_sample_hash
usage = '''
Train a model, sampling data points with the highest loss from a larger dataset
:-c --cycles int 200
Number of sampling cycles of size {epoch} to run
:-n --num-sample-chunk int 50
Number of new samples to introduce at a time between training cycles
:-sf --samples-file str -
Json file to write selected samples to.
Default: {model_base}.samples.json
:-is --invert-samples
Unused parameter
...
'''
class SampledTrainer(Trainer):
def __init__(self):
parser = create_parser(usage)
super().__init__(parser)
if self.args.invert_samples:
parser.error('--invert-samples should be left blank')
self.args.samples_file = (self.args.samples_file or '{model_base}.samples.json').format(
model_base=self.model_base
)
self.samples, self.hash_to_ind = self.load_sample_data(self.args.samples_file, self.train)
self.metrics_fiti = Fitipy(self.model_base + '.logs', 'sampling-metrics.txt')
def write_sampling_metrics(self, predicted):
correct = float(sum((predicted > 0.5) == (self.train[1] > 0.5)) / len(self.train[1]))
print('Successfully calculated: {0:.3%}'.format(correct))
lines = self.metrics_fiti.read().lines()
lines.append('{}\t{}'.format(len(self.samples) / len(self.train[1]), correct))
self.metrics_fiti.write().lines(lines)
def choose_new_samples(self, predicted):
failed_samples = {
calc_sample_hash(inp, target)
for i, (inp, pred, target) in enumerate(zip(self.train[0], predicted, self.train[1]))
if (pred > 0.5) != (target > 0.5)
}
remaining_failed_samples = failed_samples - self.samples
print('Remaining failed samples:', len(remaining_failed_samples))
return islice(remaining_failed_samples, self.args.num_sample_chunk)
def run(self):
print('Writing to:', self.args.samples_file)
print('Writing metrics to:', self.metrics_fiti.path)
for _ in range(self.args.cycles):
print('Calculating on whole dataset...')
predicted = self.model.predict(self.train[0])
self.samples.update(self.choose_new_samples(predicted))
Fitipy(self.args.samples_file).write().set(self.samples)
print('Added', self.args.num_sample_chunk, 'samples')
self.write_sampling_metrics(predicted)
self.model.fit(
*self.sampled_data, self.args.batch_size, self.epoch + self.args.epochs,
callbacks=self.callbacks, initial_epoch=self.epoch, validation_data=self.test
)
def main():
SampledTrainer().run()
if __name__ == '__main__':
main()