mycroft-precise/precise/vectorization.py

124 lines
3.8 KiB
Python

# Copyright 2018 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib
import numpy as np
import os
from typing import *
from precise.params import pr, Vectorizer
from precise.util import load_audio, InvalidAudio
from sonopy import mfcc_spec, mel_spec
inhibit_t = 0.4
inhibit_dist_t = 1.0
inhibit_hop_t = 0.1
vectorizers = {
Vectorizer.mels: lambda x: mel_spec(
x, pr.sample_rate, (pr.window_samples, pr.hop_samples),
num_filt=pr.n_filt, fft_size=pr.n_fft
),
Vectorizer.mfccs: lambda x: mfcc_spec(
x, pr.sample_rate, (pr.window_samples, pr.hop_samples),
num_filt=pr.n_filt, fft_size=pr.n_fft, num_coeffs=pr.n_mfcc
),
Vectorizer.speechpy_mfccs: lambda x: __import__('speechpy').feature.mfcc(
x, pr.sample_rate, pr.window_t, pr.hop_t, pr.n_mfcc, pr.n_filt, pr.n_fft
)
}
def vectorize_raw(audio: np.ndarray) -> np.ndarray:
"""Turns audio into feature vectors, without clipping for length"""
if len(audio) == 0:
raise InvalidAudio('Cannot vectorize empty audio!')
return vectorizers[pr.vectorizer](audio)
def add_deltas(features: np.ndarray) -> np.ndarray:
deltas = np.zeros_like(features)
for i in range(1, len(features)):
deltas[i] = features[i] - features[i - 1]
return np.concatenate([features, deltas], -1)
def vectorize(audio: np.ndarray) -> np.ndarray:
"""
Args:
audio: Audio verified to be of `sample_rate`
Returns:
array<float>: Vector representation of audio
"""
if len(audio) > pr.max_samples:
audio = audio[-pr.max_samples:]
features = vectorize_raw(audio)
if len(features) < pr.n_features:
features = np.concatenate([
np.zeros((pr.n_features - len(features), features.shape[1])),
features
])
if len(features) > pr.n_features:
features = features[-pr.n_features:]
return features
def vectorize_delta(audio: np.ndarray) -> np.ndarray:
return add_deltas(vectorize(audio))
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray:
"""
Returns an array of inputs generated from the
wake word audio that shouldn't cause an activation
"""
def samp(x):
return int(pr.sample_rate * x)
inputs = []
for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)):
if len(audio) - offset < samp(pr.buffer_t / 2.):
break
inputs.append(vectorize(audio[:-offset]))
return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))
def get_cache_folder():
return os.path.join('.cache', hashlib.md5(
str(sorted(pr.__dict__.values())).encode()
).hexdigest())
def get_cache_file(object_key: str, ext='.npy') -> str:
return os.path.join(get_cache_folder(), object_key + ext)
def load_vector(name: str, vectorizer: Callable = None) -> np.ndarray:
"""Loads and caches a vector input from a wav or npy file"""
vectorizer = vectorizer or (vectorize_delta if pr.use_delta else vectorize)
save_name = name if name.endswith('.npy') else get_cache_file(name)
if os.path.isfile(save_name):
return np.load(save_name)
os.makedirs(os.path.dirname(save_name), exist_ok=True)
vec = vectorizer(load_audio(name))
np.save(save_name, vec)
return vec