46 lines
1.3 KiB
Python
46 lines
1.3 KiB
Python
from typing import *
|
|
|
|
|
|
def weighted_log_loss(yt, yp) -> Any:
|
|
"""
|
|
Binary crossentropy with a bias towards false negatives
|
|
yt: Target
|
|
yp: Prediction
|
|
"""
|
|
from keras import backend as K
|
|
weight = 0.99 # [0..1] where 1 is inf bias
|
|
|
|
pos_loss = -(0 + yt) * K.log(0 + yp + K.epsilon())
|
|
neg_loss = -(1 - yt) * K.log(1 - yp + K.epsilon())
|
|
return weight * K.sum(neg_loss) + (1. - weight) * K.sum(pos_loss)
|
|
|
|
|
|
def weighted_mse_loss(yt, yp) -> Any:
|
|
from keras import backend as K
|
|
weight = 0.9 # [0..1] where 1 is inf bias
|
|
|
|
total = K.sum(K.ones_like(yt))
|
|
neg_loss = total * K.sum(K.square(yp * (1 - yt))) / K.sum(1 - yt)
|
|
pos_loss = total * K.sum(K.square(1. - (yp * yt))) / K.sum(yt)
|
|
|
|
return weight * neg_loss + (1. - weight) * pos_loss
|
|
|
|
|
|
def false_pos(yt, yp) -> Any:
|
|
from keras import backend as K
|
|
return K.sum(K.cast(yp * (1 - yt) > 0.5, 'float')) / K.sum(1 - yt)
|
|
|
|
|
|
def false_neg(yt, yp) -> Any:
|
|
from keras import backend as K
|
|
return K.sum(K.cast((1 - yp) * (0 + yt) > 0.5, 'float')) / K.sum(0 + yt)
|
|
|
|
|
|
def load_keras() -> Any:
|
|
import keras
|
|
keras.losses.weighted_log_loss = weighted_log_loss
|
|
keras.metrics.false_pos = false_pos
|
|
keras.metrics.false_positives = false_pos
|
|
keras.metrics.false_neg = false_neg
|
|
return keras
|