mycroft-precise/precise/scripts/record.py

69 lines
1.9 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2017 Mycroft AI Inc.
from os.path import join
from random import randint
from subprocess import Popen
from threading import Event
import numpy as np
from prettyparse import create_parser
from precise.network_runner import Listener
from precise.util import save_audio, buffer_to_audio
from precise_runner import PreciseRunner
from precise_runner.runner import ListenerEngine
usage = '''
Run a model on microphone audio input
:model str
Either Keras (.net) or TensorFlow (.pb) model to run
:-c --chunk-size int 2048
Samples between inferences
:-s --save-dir str -
Folder to save false positives
:-p --save-prefix str -
Prefix for saved filenames
'''
session_id, chunk_num = '%03d' % randint(0, 999), 0
def main():
args = create_parser(usage).parse_args()
def on_activation():
Popen(['aplay', '-q', 'data/activate.wav'])
if args.save_dir:
global chunk_num
nm = join(args.save_dir, args.save_prefix + session_id + '.' + str(chunk_num) + '.wav')
save_audio(nm, audio_buffer)
print()
print('Saved to ' + nm + '.')
chunk_num += 1
def on_prediction(conf):
print('!' if conf > 0.5 else '.', end='', flush=True)
listener = Listener(args.model, args.chunk_size)
audio_buffer = np.zeros(listener.pr.buffer_samples, dtype=float)
def get_prediction(chunk):
nonlocal audio_buffer
audio = buffer_to_audio(chunk)
audio_buffer = np.concatenate((audio_buffer[len(audio):], audio))
return listener.update(chunk)
engine = ListenerEngine(listener)
engine.get_prediction = get_prediction
runner = PreciseRunner(engine, 3, on_activation=on_activation, on_prediction=on_prediction)
runner.start()
Event().wait() # Wait forever
if __name__ == '__main__':
main()