mycroft-precise/precise/scripts/eval.py

70 lines
1.9 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2017 Mycroft AI Inc.
import json
from prettyparse import create_parser
from precise.network_runner import Listener
from precise.params import inject_params
from precise.scripts.test import show_stats
from precise.train_data import TrainData
usage = '''
Evaluate a list of models on a dataset
:-t --use-train
Evaluate training data instead of test data
:-o --output str stats.json
Output json file
...
'''
def main():
parser = create_parser(usage)
parser.add_argument('models', nargs='*', help='List of model filenames')
args = TrainData.parse_args(parser)
data = TrainData.from_both(args.db_file, args.db_folder, args.data_dir)
filenames = sum(data.train_files if args.use_train else data.test_files, [])
print('Data:', data)
stats = {}
for model_name in args.models:
inject_params(model_name)
train, test = data.load(args.use_train, not args.use_train)
inputs, targets = train if args.use_train else test
predictions = Listener.find_runner(model_name)(model_name).predict(inputs)
true_pos, true_neg = [], []
false_pos, false_neg = [], []
for name, target, prediction in zip(filenames, targets, predictions):
{
(True, False): false_pos,
(True, True): true_pos,
(False, True): false_neg,
(False, False): true_neg
}[prediction[0] > 0.5, target[0] > 0.5].append(name)
print('----', model_name, '----')
show_stats(false_pos, false_neg, true_pos, true_neg, False)
stats[model_name] = {
'true_pos': len(true_pos),
'true_neg': len(true_neg),
'false_pos': len(false_pos),
'false_neg': len(false_neg),
}
print('Writing to:', args.output)
with open(args.output, 'w') as f:
json.dump(stats, f)
if __name__ == '__main__':
main()