mycroft-precise/precise/scripts/listen.py

101 lines
3.3 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright 2019 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run a model on microphone audio input
:model str
Either Keras (.net) or TensorFlow (.pb) model to run
:-c --chunk-size int 2048
Samples between inferences
:-l --trigger-level int 3
Number of activated chunks to cause an activation
:-s --sensitivity float 0.5
Network output required to be considered activated
:-b --basic-mode
Report using . or ! rather than a visual representation
:-d --save-dir str -
Folder to save false positives
:-p --save-prefix str -
Prefix for saved filenames
"""
import numpy as np
from os.path import join
from precise_runner import PreciseRunner
from precise_runner.runner import ListenerEngine
from prettyparse import Usage
from random import randint
from shutil import get_terminal_size
from threading import Event
from precise.network_runner import Listener
from precise.scripts.base_script import BaseScript
from precise.util import save_audio, buffer_to_audio, activate_notify
class ListenScript(BaseScript):
usage = Usage(__doc__)
def __init__(self, args):
super().__init__(args)
self.listener = Listener(args.model, args.chunk_size)
self.audio_buffer = np.zeros(self.listener.pr.buffer_samples, dtype=float)
self.engine = ListenerEngine(self.listener, args.chunk_size)
self.engine.get_prediction = self.get_prediction
self.runner = PreciseRunner(self.engine, args.trigger_level, sensitivity=args.sensitivity,
on_activation=self.on_activation, on_prediction=self.on_prediction)
self.session_id, self.chunk_num = '%09d' % randint(0, 999999999), 0
def on_activation(self):
activate_notify()
if self.args.save_dir:
nm = join(self.args.save_dir, self.args.save_prefix + self.session_id + '.' + str(self.chunk_num) + '.wav')
save_audio(nm, self.audio_buffer)
print()
print('Saved to ' + nm + '.')
self.chunk_num += 1
def on_prediction(self, conf):
if self.args.basic_mode:
print('!' if conf > 0.7 else '.', end='', flush=True)
else:
max_width = 80
width = min(get_terminal_size()[0], max_width)
units = int(round(conf * width))
bar = 'X' * units + '-' * (width - units)
cutoff = round((1.0 - self.args.sensitivity) * width)
print(bar[:cutoff] + bar[cutoff:].replace('X', 'x'))
def get_prediction(self, chunk):
audio = buffer_to_audio(chunk)
self.audio_buffer = np.concatenate((self.audio_buffer[len(audio):], audio))
return self.listener.update(chunk)
def run(self):
self.runner.start()
Event().wait() # Wait forever
main = ListenScript.run_main
if __name__ == '__main__':
main()