# Copyright (c) 2017 Mycroft AI Inc. from typing import * def weighted_log_loss(yt, yp) -> Any: """ Binary crossentropy with a bias towards false negatives yt: Target yp: Prediction """ from keras import backend as K weight = 0.99 # [0..1] where 1 is inf bias pos_loss = -(0 + yt) * K.log(0 + yp + K.epsilon()) neg_loss = -(1 - yt) * K.log(1 - yp + K.epsilon()) return weight * K.sum(neg_loss) + (1. - weight) * K.sum(pos_loss) def weighted_mse_loss(yt, yp) -> Any: from keras import backend as K weight = 0.9 # [0..1] where 1 is inf bias total = K.sum(K.ones_like(yt)) neg_loss = total * K.sum(K.square(yp * (1 - yt))) / K.sum(1 - yt) pos_loss = total * K.sum(K.square(1. - (yp * yt))) / K.sum(yt) return weight * neg_loss + (1. - weight) * pos_loss def false_pos(yt, yp) -> Any: from keras import backend as K return K.sum(K.cast(yp * (1 - yt) > 0.5, 'float')) / K.sum(1 - yt) def false_neg(yt, yp) -> Any: from keras import backend as K return K.sum(K.cast((1 - yp) * (0 + yt) > 0.5, 'float')) / K.sum(0 + yt) def load_keras() -> Any: import keras keras.losses.weighted_log_loss = weighted_log_loss keras.metrics.false_pos = false_pos keras.metrics.false_positives = false_pos keras.metrics.false_neg = false_neg return keras