#!/usr/bin/env python3 # Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import chain from math import sqrt import numpy as np import os from glob import glob from os import makedirs from os.path import join, dirname, abspath from pip._vendor.distlib._backport import shutil from prettyparse import create_parser from random import random from precise.train_data import TrainData from precise.util import load_audio from precise.util import save_audio usage = ''' Create a duplicate dataset with added noise :folder str Folder containing source dataset :-tg --tags-file str - Tags file to optionally load from :noise_folder str Folder with wav files containing noise to be added :output_folder str Folder to write the duplicate generated dataset ... ''' class NoiseData: def __init__(self, noise_folder: str): self.noise_data = [ load_audio(file) for file in glob(join(noise_folder, '*.wav')) ] self.noise_data_id = 0 self.noise_pos = 0 self.repeat_count = 0 def get_fresh_noise(self, n: int) -> np.ndarray: noise_audio = np.empty(0) while len(noise_audio) < n: noise_source = self.noise_data[self.noise_data_id] noise_chunk = noise_source[self.noise_pos:self.noise_pos + n - len(noise_audio)] self.noise_pos += n - len(noise_audio) if self.noise_pos >= len(noise_source): self.noise_pos = 0 self.noise_data_id += 1 if self.noise_data_id >= len(self.noise_data): self.noise_data_id = 0 self.repeat_count += 1 if self.repeat_count == 100: print('Warning: Repeating noise 100+ times. Add more to prevent ' 'overfitting.') noise_audio = np.concatenate([noise_audio, noise_chunk]) return noise_audio def noised_audio(self, audio: np.ndarray) -> np.ndarray: noise_data = self.get_fresh_noise(len(audio)) audio_volume = sqrt(sum(audio ** 2)) noise_volume = sqrt(sum(noise_data ** 2)) adjusted_noise = audio_volume * noise_data / noise_volume ratio = 0.0 + 0.4 * random() return ratio * adjusted_noise + (1.0 - ratio) * audio def main(): args = create_parser(usage).parse_args() args.tags_file = abspath(args.tags_file) args.folder = abspath(args.folder) args.output_folder = abspath(args.output_folder) data = TrainData.from_both(args.tags_file, args.folder, args.folder) noise_data = NoiseData(args.noise_folder) print('Data:', data) def translate_filename(source: str) -> str: assert source.startswith(args.folder) relative_file = source[len(args.folder):].strip(os.path.sep) return join(args.output_folder, relative_file) all_filenames = sum(data.train_files + data.test_files, []) for i, filename in enumerate(all_filenames): print('{0:.2%} \r'.format(i / (len(all_filenames) - 1)), end='', flush=True) audio = load_audio(filename) altered = noise_data.noised_audio(audio) output_filename = translate_filename(filename) makedirs(dirname(output_filename), exist_ok=True) save_audio(output_filename, altered) print('Done!') if args.tags_file and args.tags_file.startswith(args.folder): shutil.copy2(args.tags_file, translate_filename(args.tags_file)) if __name__ == '__main__': main()