#!/usr/bin/env python3 # Copyright (c) 2017 Mycroft AI Inc. import sys sys.path += ['.'] # noqa from prettyparse import create_parser from precise.train_data import TrainData from precise.model import create_model from precise.params import inject_params, save_params usage = ''' Train a new model on a dataset :model str Keras model file (.net) to load from and save to :-e --epochs int 10 Number of epochs to train model for :-sb --save-best Only save the model each epoch if its stats improve :-nv --no-validation Disable accuracy and validation calculation to improve speed during training :-mm --metric-monitor str loss Metric used to determine when to save ... ''' def main(): args = TrainData.parse_args(create_parser(usage)) inject_params(args.model) save_params(args.model) data = TrainData.from_both(args.db_file, args.db_folder, args.data_dir) print('Data:', data) (inputs, outputs), test_data = data.load(args.no_validation) print('Inputs shape:', inputs.shape) print('Outputs shape:', outputs.shape) if test_data: print('Test inputs shape:', test_data[0].shape) print('Test outputs shape:', test_data[1].shape) if 0 in inputs.shape or 0 in outputs.shape: print('Not enough data to train') exit(1) model = create_model(args.model, args.no_validation) model.summary() from keras.callbacks import ModelCheckpoint checkpoint = ModelCheckpoint(args.model, monitor=args.metric_monitor, save_best_only=args.save_best) try: model.fit(inputs, outputs, 5000, args.epochs, validation_data=test_data, callbacks=[checkpoint]) except KeyboardInterrupt: print() finally: model.save(args.model) if __name__ == '__main__': main()