# Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from argparse import ArgumentParser from contextlib import suppress from glob import glob from hashlib import md5 from os.path import join, isfile, dirname from typing import * import numpy as np from prettyparse import add_to_parser from precise.util import find_wavs from precise.vectorization import load_vector, vectorize_inhibit, vectorize class TrainData: """Class to handle loading of wave data from categorized folders and tagged text files""" def __init__(self, train_files: Tuple[List[str], List[str]], test_files: Tuple[List[str], List[str]]): self.train_files, self.test_files = train_files, test_files @classmethod def from_folder(cls, folder: str) -> 'TrainData': """ Load a set of data from a structured folder in the following format: {prefix}/ wake-word/ *.wav not-wake-word/ *.wav test/ wake-word/ *.wav not-wake-word/ *.wav """ return cls(find_wavs(folder), find_wavs(join(folder, 'test'))) @classmethod def from_tags(cls, tags_file: str, tags_folder: str) -> 'TrainData': """ Load a set of data from a text file with tags in the following format: (tab) (tab) file_id: identifier of file such that the following file exists: {tags_folder}/{data_id}.wav tag: "wake-word" or "not-wake-word" """ if not tags_file: num_ignored_wavs = len(glob(join(tags_folder, '*.wav'))) if num_ignored_wavs > 10: print('WARNING: Found {} wavs but no tags file specified!'.format(num_ignored_wavs)) return cls(([], []), ([], [])) if not isfile(tags_file): raise RuntimeError('Database file does not exist: ' + tags_file) train_groups = {} train_group_file = join(tags_file.replace('.txt', '') + '.groups.json') if isfile(train_group_file): with open(train_group_file) as f: train_groups = json.load(f) tags_files = { 'wake-word': [], 'not-wake-word': [] } with open(tags_file) as f: for line in f.read().split('\n'): if not line: continue file, tag = line.split('\t') tags_files[tag.strip()].append(join(tags_folder, file.strip() + '.wav')) train_files, test_files = ([], []), ([], []) for label, rows in enumerate([tags_files['wake-word'], tags_files['not-wake-word']]): for fn in rows: if not isfile(fn): print('Missing file:', fn) continue if fn not in train_groups: train_groups[fn] = ( 'test' if md5(fn.encode('utf8')).hexdigest() > 'c' * 32 else 'train' ) { 'train': train_files, 'test': test_files }[train_groups[fn]][label].append(fn) with open(train_group_file, 'w') as f: json.dump(train_groups, f) return cls(train_files, test_files) @classmethod def from_both(cls, tags_file: str, tags_folder: str, folder: str) -> 'TrainData': """Load data from both a database and a structured folder""" return cls.from_tags(tags_file, tags_folder) + cls.from_folder(folder) def load(self, train=True, test=True) -> tuple: """ Load the vectorized representations of the stored data files Args: train: Whether to load train data test: Whether to load test data """ return self.__load(self.__load_files, train, test) def load_inhibit(self, train=True, test=True) -> tuple: """Generate data with inhibitory inputs created from wake word samples""" def loader(kws: list, nkws: list): from precise.params import pr inputs = np.empty((0, pr.n_features, pr.feature_size)) outputs = np.zeros((len(kws), 1)) for f in kws: if not isfile(f): continue new_vec = load_vector(f, vectorize_inhibit) inputs = np.concatenate([inputs, new_vec]) return self.merge((inputs, outputs), self.__load_files(kws, nkws)) return self.__load(loader, train, test) @staticmethod def merge(data_a: tuple, data_b: tuple) -> tuple: return np.concatenate((data_a[0], data_b[0])), np.concatenate((data_a[1], data_b[1])) @staticmethod def parse_args(parser: ArgumentParser) -> Any: """Return parsed args from parser, adding options for train data inputs""" extra_usage = ''' :folder str Folder to wav files from :-tf --tags-folder str {folder} Specify a different folder to load file ids in tags file from :-tg --tags-file str - Text file to load tags from where each line is TAB (wake-word|not-wake-word) and {folder}/.wav exists ''' add_to_parser(parser, extra_usage) args = parser.parse_args() args.tags_folder = args.tags_folder.format(folder=args.folder) return args def __repr__(self) -> str: string = '' return string.format( kws=len(self.train_files[0]), nkws=len(self.train_files[1]), test_kws=len(self.test_files[0]), test_nkws=len(self.test_files[1]) ) def __add__(self, other: 'TrainData') -> 'TrainData': if not isinstance(other, TrainData): raise TypeError('Can only add TrainData to TrainData') return TrainData((self.train_files[0] + other.train_files[0], self.train_files[1] + other.train_files[1]), (self.test_files[0] + other.test_files[0], self.test_files[1] + other.test_files[1])) def __load(self, loader: Callable, train: bool, test: bool) -> tuple: return tuple([ loader(*files) if files else None for files in (train and self.train_files, test and self.test_files) ]) @staticmethod def __load_files(kw_files: list, nkw_files: list, vectorizer: Callable = vectorize) -> tuple: inputs = [] outputs = [] def add(filenames, output): for f in filenames: try: inputs.append(load_vector(f, vectorizer)) outputs.append(np.array([output])) except ValueError: print('Skipping invalid file:', f) print('Loading wake-word...') add(kw_files, 1.0) print('Loading not-wake-word...') add(nkw_files, 0.0) from precise.params import pr return ( np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size)), np.array(outputs) if outputs else np.empty((0, 1)) )