# Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import isfile from typing import * from precise.functions import load_keras, false_pos, false_neg, weighted_log_loss from precise.params import inject_params, pr lstm_units = 20 def load_precise_model(model_name: str) -> Any: """Loads a Keras model from file, handling custom loss function""" if not model_name.endswith('.net'): print('Warning: Unknown model type, ', model_name) inject_params(model_name) return load_keras().models.load_model(model_name) def create_model(model_name: str, skip_acc=False, extra_metrics=False) -> Any: """ Load or create a precise model Args: model_name: Name of model skip_acc: Whether to skip accuracy calculation while training Returns: model: Loaded Keras model """ if isfile(model_name): print('Loading from ' + model_name + '...') model = load_precise_model(model_name) else: from keras.layers.core import Dense from keras.layers.recurrent import GRU from keras.models import Sequential model = Sequential() model.add(GRU(lstm_units, activation='linear', input_shape=(pr.n_features, pr.feature_size), dropout=0.3, name='net')) model.add(Dense(1, activation='sigmoid')) load_keras() metrics = ['accuracy'] + extra_metrics * [false_pos, false_neg] model.compile('rmsprop', weighted_log_loss, metrics=(not skip_acc) * metrics) return model