#!/usr/bin/env python3 # Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import namedtuple from prettyparse import create_parser from precise.network_runner import Listener from precise.params import inject_params from precise.train_data import TrainData usage = ''' Test a model against a dataset :model str Either Keras (.net) or TensorFlow (.pb) model to test :-t --use-train Evaluate training data instead of test data :-nf --no-filenames Don't print out the names of files that failed ... ''' Stats = namedtuple('Stats', 'false_pos false_neg true_pos true_neg') def stats_to_dict(stats: Stats) -> dict: return { 'true_pos': len(stats.true_pos), 'true_neg': len(stats.true_neg), 'false_pos': len(stats.false_pos), 'false_neg': len(stats.false_neg), } def show_stats(stats: Stats, show_filenames): false_pos, false_neg, true_pos, true_neg = stats num_correct = len(true_pos) + len(true_neg) total = num_correct + len(false_pos) + len(false_neg) def prc(a: int, b: int): # Rounded percent return round(100.0 * (b and a / b), 2) if show_filenames: print('=== False Positives ===') for i in false_pos: print(i) print() print('=== False Negatives ===') for i in false_neg: print(i) print() print('=== Counts ===') print('False Positives:', len(false_pos)) print('True Negatives:', len(true_neg)) print('False Negatives:', len(false_neg)) print('True Positives:', len(true_pos)) print() print('=== Summary ===') print(num_correct, "out of", total) print(prc(num_correct, total), "%") print() print(prc(len(false_pos), len(false_pos) + len(true_neg)), "% false positives") print(prc(len(false_neg), len(false_neg) + len(true_pos)), "% false negatives") def calc_stats(filenames, targets, predictions) -> Stats: stats = Stats([], [], [], []) for name, target, prediction in zip(filenames, targets, predictions): { (True, False): stats.false_pos, (True, True): stats.true_pos, (False, True): stats.false_neg, (False, False): stats.true_neg }[prediction[0] > 0.5, target[0] > 0.5].append(name) return stats def main(): args = TrainData.parse_args(create_parser(usage)) inject_params(args.model) data = TrainData.from_both(args.tags_file, args.tags_folder, args.folder) train, test = data.load(args.use_train, not args.use_train, shuffle=False) inputs, targets = train if args.use_train else test filenames = sum(data.train_files if args.use_train else data.test_files, []) predictions = Listener.find_runner(args.model)(args.model).predict(inputs) stats = calc_stats(filenames, targets, predictions) print('Data:', data) show_stats(stats, not args.no_filenames) if __name__ == '__main__': main()