#!/usr/bin/env python3 # Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from os.path import isfile, isdir from prettyparse import create_parser from precise.network_runner import Listener from precise.params import inject_params from precise.pocketsphinx.listener import PocketsphinxListener from precise.pocketsphinx.scripts.test import test_pocketsphinx from precise.scripts.test import show_stats, calc_stats, stats_to_dict from precise.train_data import TrainData usage = ''' Evaluate a list of models on a dataset :-t --use-train Evaluate training data instead of test data :-pw --pocketsphinx-wake-word str - Optional wake word used to generate a Pocketsphinx data point :-pd --pocketsphinx-dict str - Optional word dictionary used to generate a Pocketsphinx data point Format: wake-word.yy-mm-dd.dict :-pf --pocketsphinx-folder str - Optional hmm folder used to generate a Pocketsphinx data point. :-pth --pocketsphinx-threshold float 1e-90 Optional threshold used to generate a Pocketsphinx data point :-o --output str stats.json Output json file ... ''' def main(): parser = create_parser(usage) parser.add_argument('models', nargs='*', help='List of model filenames in format: wake-word.yy-mm-dd.net') args = TrainData.parse_args(parser) if not ( bool(args.pocketsphinx_dict) == bool(args.pocketsphinx_folder) == bool(args.pocketsphinx_wake_word) ): parser.error('Must pass all or no Pocketsphinx arguments') data = TrainData.from_both(args.tags_file, args.tags_folder, args.folder) data_files = data.train_files if args.use_train else data.test_files print('Data:', data) metrics = {} if args.pocketsphinx_dict and args.pocketsphinx_folder and args.pocketsphinx_wake_word: if not isfile(args.pocketsphinx_dict): parser.error('No such file: ' + args.pocketsphinx_dict) if not isdir(args.pocketsphinx_folder): parser.error('No such folder: ' + args.pocketsphinx_folder) listener = PocketsphinxListener( args.pocketsphinx_wake_word, args.pocketsphinx_dict, args.pocketsphinx_folder, args.pocketsphinx_threshold ) stats = test_pocketsphinx(listener, data_files) metrics[args.pocketsphinx_dict] = stats_to_dict(stats) for model_name in args.models: print('Calculating', model_name + '...') inject_params(model_name) train, test = data.load(args.use_train, not args.use_train) inputs, targets = train if args.use_train else test predictions = Listener.find_runner(model_name)(model_name).predict(inputs) stats = calc_stats(sum(data_files, []), targets, predictions) print('----', model_name, '----') show_stats(stats, False) metrics[model_name] = stats_to_dict(stats) print('Writing to:', args.output) with open(args.output, 'w') as f: json.dump(metrics, f) if __name__ == '__main__': main()