#!/usr/bin/env python3 # Copyright 2018 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import join from random import randint from threading import Event import numpy as np from prettyparse import create_parser from precise.network_runner import Listener from precise.util import save_audio, buffer_to_audio, activate_notify from precise_runner import PreciseRunner from precise_runner.runner import ListenerEngine usage = ''' Run a model on microphone audio input :model str Either Keras (.net) or TensorFlow (.pb) model to run :-c --chunk-size int 2048 Samples between inferences :-t --threshold int 3 Number of positives to cause an activation :-s --save-dir str - Folder to save false positives :-p --save-prefix str - Prefix for saved filenames ''' session_id, chunk_num = '%09d' % randint(0, 999999999), 0 def main(): args = create_parser(usage).parse_args() def on_activation(): activate_notify() if args.save_dir: global chunk_num nm = join(args.save_dir, args.save_prefix + session_id + '.' + str(chunk_num) + '.wav') save_audio(nm, audio_buffer) print() print('Saved to ' + nm + '.') chunk_num += 1 def on_prediction(conf): print('!' if conf > 0.5 else '.', end='', flush=True) listener = Listener(args.model, args.chunk_size) audio_buffer = np.zeros(listener.pr.buffer_samples, dtype=float) def get_prediction(chunk): nonlocal audio_buffer audio = buffer_to_audio(chunk) audio_buffer = np.concatenate((audio_buffer[len(audio):], audio)) return listener.update(chunk) engine = ListenerEngine(listener, args.chunk_size) engine.get_prediction = get_prediction runner = PreciseRunner(engine, args.threshold, on_activation=on_activation, on_prediction=on_prediction) runner.start() Event().wait() # Wait forever if __name__ == '__main__': main()