# Copyright 2019 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Loads model """ import attr from os.path import isfile from typing import * from precise.functions import load_keras, false_pos, false_neg, weighted_log_loss, set_loss_bias from precise.params import inject_params, pr if TYPE_CHECKING: from keras.models import Sequential @attr.s() class ModelParams: """ Attributes: recurrent_units: Number of GRU units. Higher values increase computation but allow more complex learning. Too high of a value causes overfitting dropout: Reduces overfitting but can potentially decrease accuracy if too high extra_metrics: Whether to include false positive and false negative metrics while training skip_acc: Whether to skip accuracy calculation while training loss_bias: Near 1.0 reduces false positives. See freeze_till: Layer number from start to freeze after loading (allows for partial training) """ recurrent_units = attr.ib(20) # type: int dropout = attr.ib(0.2) # type: float extra_metrics = attr.ib(False) # type: bool skip_acc = attr.ib(False) # type: bool loss_bias = attr.ib(0.7) # type: float freeze_till = attr.ib(0) # type: int def load_precise_model(model_name: str) -> Any: """Loads a Keras model from file, handling custom loss function""" if not model_name.endswith('.net'): print('Warning: Unknown model type, ', model_name) inject_params(model_name) return load_keras().models.load_model(model_name) def create_model(model_name: Optional[str], params: ModelParams) -> 'Sequential': """ Load or create a precise model Args: model_name: Name of model params: Parameters used to create the model Returns: model: Loaded Keras model """ if model_name and isfile(model_name): print('Loading from ' + model_name + '...') model = load_precise_model(model_name) else: from keras.layers.core import Dense from keras.layers.recurrent import GRU from keras.models import Sequential model = Sequential() model.add(GRU( params.recurrent_units, activation='linear', input_shape=( pr.n_features, pr.feature_size), dropout=params.dropout, name='net' )) model.add(Dense(1, activation='sigmoid')) load_keras() metrics = ['accuracy'] + params.extra_metrics * [false_pos, false_neg] set_loss_bias(params.loss_bias) for i in model.layers[:params.freeze_till]: i.trainable = False model.compile('rmsprop', weighted_log_loss, metrics=(not params.skip_acc) * metrics) return model