diff --git a/precise/model.py b/precise/model.py index b9589a1..cd88aa5 100644 --- a/precise/model.py +++ b/precise/model.py @@ -29,17 +29,20 @@ if TYPE_CHECKING: class ModelParams: """ Attributes: - recurrent_units: - dropout: - extra_metrics: Whether to include false positive and false negative metrics + recurrent_units: Number of GRU units. Higher values increase computation + but allow more complex learning. Too high of a value causes overfitting + dropout: Reduces overfitting but can potentially decrease accuracy if too high + extra_metrics: Whether to include false positive and false negative metrics while training skip_acc: Whether to skip accuracy calculation while training + loss_bias: Near 1.0 reduces false positives. See + freeze_till: Layer number from start to freeze after loading (allows for partial training) """ recurrent_units = attr.ib(20) # type: int dropout = attr.ib(0.2) # type: float extra_metrics = attr.ib(False) # type: bool skip_acc = attr.ib(False) # type: bool loss_bias = attr.ib(0.7) # type: float - freeze_till = attr.ib(0) # type: bool + freeze_till = attr.ib(0) # type: int def load_precise_model(model_name: str) -> Any: @@ -73,7 +76,8 @@ def create_model(model_name: Optional[str], params: ModelParams) -> 'Sequential' model = Sequential() model.add(GRU( params.recurrent_units, activation='linear', - input_shape=(pr.n_features, pr.feature_size), dropout=params.dropout, name='net' + input_shape=( + pr.n_features, pr.feature_size), dropout=params.dropout, name='net' )) model.add(Dense(1, activation='sigmoid')) @@ -82,5 +86,6 @@ def create_model(model_name: Optional[str], params: ModelParams) -> 'Sequential' set_loss_bias(params.loss_bias) for i in model.layers[:params.freeze_till]: i.trainable = False - model.compile('rmsprop', weighted_log_loss, metrics=(not params.skip_acc) * metrics) + model.compile('rmsprop', weighted_log_loss, + metrics=(not params.skip_acc) * metrics) return model