Make loss bias use module level variable
parent
3fc1fe4789
commit
252abbeb15
|
@ -13,6 +13,8 @@
|
|||
# limitations under the License.
|
||||
from typing import *
|
||||
|
||||
LOSS_BIAS = 0.9 # [0..1] where 1 is inf bias
|
||||
|
||||
|
||||
def weighted_log_loss(yt, yp) -> Any:
|
||||
"""
|
||||
|
@ -21,23 +23,21 @@ def weighted_log_loss(yt, yp) -> Any:
|
|||
yp: Prediction
|
||||
"""
|
||||
from keras import backend as K
|
||||
weight = 0.7 # [0..1] where 1 is inf bias
|
||||
|
||||
pos_loss = -(0 + yt) * K.log(0 + yp + K.epsilon())
|
||||
neg_loss = -(1 - yt) * K.log(1 - yp + K.epsilon())
|
||||
|
||||
return weight * K.mean(neg_loss) + (1. - weight) * K.mean(pos_loss)
|
||||
return LOSS_BIAS * K.mean(neg_loss) + (1. - LOSS_BIAS) * K.mean(pos_loss)
|
||||
|
||||
|
||||
def weighted_mse_loss(yt, yp) -> Any:
|
||||
from keras import backend as K
|
||||
weight = 0.9 # [0..1] where 1 is inf bias
|
||||
|
||||
total = K.sum(K.ones_like(yt))
|
||||
neg_loss = total * K.sum(K.square(yp * (1 - yt))) / K.sum(1 - yt)
|
||||
pos_loss = total * K.sum(K.square(1. - (yp * yt))) / K.sum(yt)
|
||||
|
||||
return weight * neg_loss + (1. - weight) * pos_loss
|
||||
return LOSS_BIAS * neg_loss + (1. - LOSS_BIAS) * pos_loss
|
||||
|
||||
|
||||
def false_pos(yt, yp) -> Any:
|
||||
|
|
Loading…
Reference in New Issue