Created train_optimizer.py

pull/18/head
mikhaildmitrienko 2018-07-12 16:51:47 -05:00 committed by Matthew Scholefield
parent 7d97cd2331
commit 01dc86896d
1 changed files with 110 additions and 0 deletions

View File

@ -0,0 +1,110 @@
#Precise keras model with bbopt optimiz
import keras
from keras.layers.core import Dense
from keras.layers.recurrent import GRU
from keras.models import Sequential
from typing import *
from functions import load_keras, weighted_log_loss
from train_data import TrainData
from params import pr
from pprint import pprint
import h5py
import numpy
import os
from keras import backend as K
import codecs, json
from decimal import *
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
#Optimizer blackhat
from bbopt import BlackBoxOptimizer
bb = BlackBoxOptimizer(file=__file__)
#Loading in data to train
data = TrainData.from_both('/home/mikhail/wakewords/wakewords/files/tags.txt', '/home/mikhail/wakewords/wakewords/files', '/home/mikhail/wakewords/wakewords/not-wake-word/generated')
(train_inputs, train_outputs), (test_inputs, test_outputs) = data.load()
test_data = (test_inputs, test_outputs)
def false_pos(yt, yp) -> Any:
from keras import backend as K
return K.sum(K.cast(yp * (1 - yt) > 0.5, 'float')) / K.sum(1 - yt)
def false_neg(yt, yp) -> Any:
from keras import backend as K
return K.sum(K.cast((1 - yp) * (0 + yt) > 0.5, 'float')) / K.sum(0 + yt)
#goodness metric for optimization
def goodness(y_true, y_pred) -> Any:
from keras import backend as K
from math import exp
try:
param_score = 1.0 / (1.0 + exp((model.count_params() - 11000) / 2000))
except OverflowError:
param_score = 1.0 / (1.0 + Decimal(exp((model.count_params() - 11000)) / 2000))
fitness = param_score * (((1.0 - (0.05 * false_neg(y_true, y_pred))) - (0.95 * false_pos(y_true, y_pred))))
return fitness
for i in range(5):
if __name__ == "__main__":
bb.run(backend="random")
print("\n= %d = (example #%d)" % (i+1, len(bb.get_data()["examples"])+1))
shuffle_ids = numpy.arange(len(test_inputs))
numpy.random.shuffle(shuffle_ids)
(test_inputs, test_outputs) = (test_inputs[shuffle_ids], test_outputs[shuffle_ids])
model_array = numpy.empty(len(test_data), dtype=int)
with h5py.File('tested_models.hdf5', 'w') as f:
f.create_dataset('dataset_1', data=model_array)
f.close()
batch_size = bb.randint("batch_size", 1000, 5000, guess=3000)
model = Sequential()
model.add(GRU(units = bb.randint("units", 1, 100, guess=50), activation='linear', input_shape=(pr.n_features, pr.feature_size),
dropout=bb.uniform("dropout", 0.1, 0.9, guess=0.6), name='net'))
model.add(Dense(1, activation='sigmoid'))
model.compile('rmsprop', weighted_log_loss, metrics=['accuracy'])
from keras.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint('tested_models.hdf5', monitor='val_loss',
save_best_only=True)
train_history = model.fit(train_inputs, train_outputs, batch_size=batch_size, epochs=100, validation_data=(test_inputs, test_outputs),
callbacks=[checkpoint])
test_loss, test_acc = model.evaluate(test_inputs, test_outputs)
predictions = model.predict(test_inputs)
num_false_positive = numpy.sum(predictions * (1 - test_outputs) > 0.5)
num_false_negative = numpy.sum((1 - predictions) * test_outputs > 0.5)
false_positives = num_false_positive / numpy.sum(test_outputs < 0.5)
false_negatives = num_false_negative / numpy.sum(test_outputs > 0.5)
bb.remember({
"test loss": test_loss,
"test accuracy": test_acc,
"false positive%": false_positives,
"false negative%": false_negatives
})
print(false_positives)
print("False positive: ", false_positives*100, "%")
bb.minimize(false_positives)
pprint(bb.get_current_run())
best_example = bb.get_optimal_run()
print("\n= BEST = (example #%d)" % bb.get_data()["examples"].index(best_example))
pprint(best_example)